Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1854. doi: 10.1107/S1600536812022404

3-{2-[(1,3-Benzothia­zol-2-yl)sulfanyl­meth­yl]phen­yl}-4-meth­oxy-5,5-dimethyl­furan-2(5H)-one

Anna Duan a, Haikui Yang a, Peiliang Zhao a, Wenwei You a,*
PMCID: PMC3379421  PMID: 22719619

Abstract

In the title compound, C21H19NO3S2, the dihedral angles formed between the thia­zole ring and the adjacent benzene ring and the other benzene ring are 1.58 (3) and 76.48 (6)°, respectively. The crystal structure features a weak C—H⋯O inter­action.

Related literature  

For the anti-tumor activity of benzothia­zole derivatives, see: Brantley et al. (2004) and for their anti-tuberculous properties, see: Palmer et al. (1971). For fungicidal properties of benzothia­zolines and the preparation of the title compound, see: Zhao et al. (2010). For general background to furan-2(5H)-ones and their derivatives, see: Iannazzo et al. (2008).graphic file with name e-68-o1854-scheme1.jpg

Experimental  

Crystal data  

  • C21H19NO3S2

  • M r = 397.49

  • Triclinic, Inline graphic

  • a = 10.4702 (9) Å

  • b = 10.4851 (9) Å

  • c = 10.5169 (9) Å

  • α = 117.567 (1)°

  • β = 100.398 (1)°

  • γ = 95.257 (1)°

  • V = 986.15 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 292 K

  • 0.20 × 0.20 × 0.10 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005) T min = 0.944, T max = 0.972

  • 7206 measured reflections

  • 3804 independent reflections

  • 2713 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.109

  • S = 0.90

  • 3804 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022404/im2376sup1.cif

e-68-o1854-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022404/im2376Isup2.hkl

e-68-o1854-Isup2.hkl (186.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022404/im2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.56 3.302 (3) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Science Foundation of the Medical Scientific Research Foundation of Guangdong Province (B2010185), and the Natural Science Foundation of Guangdong Province (No. 10451051501004725)

supplementary crystallographic information

Comment

Benzothiazole derivatives are well known to exhibit a wide spectrum of biological activities, including fungicidal, anticancer and anti-tuberculous properties. (Brantley et al., 2004; Zhao et al., 2010; Palmer et al., 1971). In addition, furan-2(5H)-one derivatives also have good biological activities (Iannazzo et al., 2008). These findings prompted us to synthesize a new series of benzothiazole derivatives by incorporating furan-2(5H)-one at the 2-position, in the hope of finding molecules showing an improved bioactivity. We present here the X-ray crystallographic analysis of the title compound, (I), which was designed and synthesized in our laboratory.

A view of the molecular structure of the title compound is given in Fig.1. The bond lengths and angles are unremarkable.The dihedral angles formed between the triazole ring and the adjacent benzene ring and the other benzene ring system are 1.58 (3)° and 76.48 (6)°, respectively. One intermolecular C—H···O hydrogen bond exists in the crystal structure (Table 1). Atom C2 in the molecule acts as donor, via the H atom H2, towards O1 of an adjacent molecule (Fig.2). No π-π-stacking interactions are observed in the crystal structure.

Experimental

The title compound was synthesized according to a published procedure (Zhao et al., 2010). Crystals appropriate for X-ray data collection were obtained by slow evaporation of a methanolic solution at 292 K.

Refinement

All H atoms were initially located in a difference Fourier map. Methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I) showing displacement ellipsoids at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

Hydrogen bonding in the crystal structure of (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: x - 1, y, z]

Crystal data

C21H19NO3S2 Z = 2
Mr = 397.49 F(000) = 416
Triclinic, P1 Dx = 1.339 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.4702 (9) Å Cell parameters from 2192 reflections
b = 10.4851 (9) Å θ = 2.3–24.6°
c = 10.5169 (9) Å µ = 0.29 mm1
α = 117.567 (1)° T = 292 K
β = 100.398 (1)° Block, colorless
γ = 95.257 (1)° 0.20 × 0.20 × 0.10 mm
V = 986.15 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3804 independent reflections
Radiation source: fine-focus sealed tube 2713 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
phi and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) h = −11→12
Tmin = 0.944, Tmax = 0.972 k = −12→12
7206 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0592P)2] where P = (Fo2 + 2Fc2)/3
3804 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3099 (2) 1.1296 (2) 0.3804 (2) 0.0429 (5)
C2 0.1915 (2) 1.1787 (3) 0.3934 (3) 0.0585 (6)
H2 0.1101 1.1139 0.3439 0.070*
C3 0.1987 (3) 1.3256 (3) 0.4814 (3) 0.0749 (8)
H3 0.1207 1.3609 0.4920 0.090*
C4 0.3186 (3) 1.4226 (3) 0.5548 (3) 0.0720 (8)
H4 0.3199 1.5220 0.6133 0.086*
C5 0.4367 (2) 1.3757 (2) 0.5435 (3) 0.0548 (6)
H5 0.5172 1.4418 0.5944 0.066*
C6 0.4325 (2) 1.2275 (2) 0.4545 (2) 0.0401 (5)
C7 0.5064 (2) 1.0231 (2) 0.3504 (2) 0.0393 (5)
C8 0.7722 (2) 1.0145 (2) 0.3745 (2) 0.0471 (5)
H8A 0.7754 1.0955 0.4713 0.057*
H8B 0.8379 0.9594 0.3878 0.057*
C9 0.80777 (19) 1.0755 (2) 0.2782 (2) 0.0383 (5)
C10 0.82367 (19) 0.9825 (2) 0.1364 (2) 0.0388 (5)
C11 0.8548 (2) 1.0439 (2) 0.0510 (2) 0.0468 (5)
H11 0.8650 0.9830 −0.0432 0.056*
C12 0.8711 (2) 1.1929 (3) 0.1022 (3) 0.0532 (6)
H12 0.8919 1.2318 0.0433 0.064*
C13 0.8561 (2) 1.2839 (2) 0.2417 (3) 0.0547 (6)
H13 0.8674 1.3847 0.2775 0.066*
C14 0.8244 (2) 1.2252 (2) 0.3280 (2) 0.0486 (6)
H14 0.8140 1.2873 0.4217 0.058*
C15 0.8151 (2) 0.8231 (2) 0.0802 (2) 0.0406 (5)
C16 0.7292 (2) 0.7023 (2) −0.0266 (2) 0.0495 (6)
C17 0.7745 (2) 0.5641 (3) −0.0455 (3) 0.0630 (7)
C18 0.9225 (2) 0.7703 (3) 0.1412 (3) 0.0514 (6)
C19 0.5531 (2) 0.8016 (3) −0.1034 (3) 0.0575 (6)
H19A 0.5432 0.8556 −0.0043 0.086*
H19B 0.4677 0.7665 −0.1725 0.086*
H19C 0.6086 0.8647 −0.1235 0.086*
C20 0.6809 (3) 0.4717 (3) −0.0114 (4) 0.0940 (10)
H20A 0.7197 0.3923 −0.0111 0.141*
H20B 0.5983 0.4328 −0.0856 0.141*
H20C 0.6657 0.5315 0.0841 0.141*
C21 0.8059 (3) 0.4778 (3) −0.1948 (3) 0.0900 (10)
H21A 0.8612 0.5429 −0.2127 0.135*
H21B 0.7250 0.4334 −0.2718 0.135*
H21C 0.8515 0.4026 −0.1941 0.135*
N1 0.54360 (17) 1.16332 (19) 0.43437 (18) 0.0421 (4)
O1 1.02066 (17) 0.84009 (18) 0.2398 (2) 0.0706 (5)
O2 0.89788 (16) 0.62095 (17) 0.06858 (18) 0.0649 (5)
O3 0.61278 (16) 0.67939 (17) −0.11829 (18) 0.0677 (5)
S1 0.33515 (6) 0.95239 (6) 0.28478 (6) 0.04817 (18)
S2 0.60881 (6) 0.89569 (6) 0.29888 (6) 0.04876 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0394 (13) 0.0446 (13) 0.0388 (11) 0.0066 (10) 0.0056 (10) 0.0175 (10)
C2 0.0378 (14) 0.0557 (16) 0.0604 (15) 0.0056 (12) 0.0000 (12) 0.0162 (13)
C3 0.0425 (16) 0.0631 (18) 0.091 (2) 0.0176 (14) 0.0086 (15) 0.0167 (16)
C4 0.0551 (18) 0.0436 (15) 0.088 (2) 0.0149 (13) 0.0073 (15) 0.0121 (15)
C5 0.0463 (15) 0.0416 (14) 0.0616 (15) 0.0026 (11) 0.0019 (12) 0.0184 (12)
C6 0.0366 (12) 0.0418 (13) 0.0405 (11) 0.0050 (10) 0.0064 (10) 0.0209 (10)
C7 0.0413 (13) 0.0427 (13) 0.0372 (11) 0.0079 (10) 0.0111 (10) 0.0219 (10)
C8 0.0421 (13) 0.0541 (14) 0.0441 (12) 0.0157 (11) 0.0110 (11) 0.0221 (11)
C9 0.0265 (11) 0.0390 (12) 0.0429 (12) 0.0082 (9) 0.0058 (9) 0.0156 (10)
C10 0.0283 (11) 0.0409 (12) 0.0411 (11) 0.0097 (9) 0.0065 (9) 0.0155 (10)
C11 0.0401 (13) 0.0523 (15) 0.0461 (13) 0.0114 (11) 0.0151 (10) 0.0206 (11)
C12 0.0440 (14) 0.0568 (16) 0.0663 (16) 0.0077 (12) 0.0170 (12) 0.0356 (14)
C13 0.0479 (15) 0.0392 (14) 0.0766 (17) 0.0115 (11) 0.0190 (13) 0.0263 (13)
C14 0.0419 (13) 0.0437 (14) 0.0487 (13) 0.0107 (11) 0.0134 (11) 0.0124 (11)
C15 0.0322 (12) 0.0388 (12) 0.0428 (12) 0.0104 (10) 0.0084 (10) 0.0132 (10)
C16 0.0387 (13) 0.0433 (14) 0.0515 (13) 0.0124 (11) 0.0027 (11) 0.0135 (11)
C17 0.0431 (15) 0.0404 (14) 0.0751 (17) 0.0103 (12) −0.0045 (13) 0.0104 (13)
C18 0.0405 (14) 0.0442 (15) 0.0562 (14) 0.0145 (11) 0.0076 (12) 0.0146 (12)
C19 0.0451 (15) 0.0602 (16) 0.0596 (15) 0.0165 (12) 0.0001 (12) 0.0269 (13)
C20 0.071 (2) 0.0528 (18) 0.143 (3) 0.0068 (16) 0.003 (2) 0.045 (2)
C21 0.076 (2) 0.0606 (18) 0.078 (2) 0.0289 (16) −0.0061 (16) −0.0043 (16)
N1 0.0396 (11) 0.0438 (11) 0.0437 (10) 0.0062 (9) 0.0088 (8) 0.0232 (9)
O1 0.0455 (11) 0.0551 (11) 0.0751 (12) 0.0121 (9) −0.0145 (9) 0.0129 (10)
O2 0.0498 (11) 0.0427 (10) 0.0749 (11) 0.0169 (8) −0.0066 (9) 0.0132 (9)
O3 0.0483 (11) 0.0482 (10) 0.0695 (11) 0.0112 (8) −0.0148 (9) 0.0091 (9)
S1 0.0433 (4) 0.0417 (4) 0.0459 (3) 0.0025 (3) 0.0043 (3) 0.0141 (3)
S2 0.0507 (4) 0.0436 (4) 0.0557 (4) 0.0122 (3) 0.0204 (3) 0.0243 (3)

Geometric parameters (Å, º)

C1—C2 1.391 (3) C12—C13 1.379 (3)
C1—C6 1.403 (3) C12—H12 0.9300
C1—S1 1.729 (2) C13—C14 1.378 (3)
C2—C3 1.367 (3) C13—H13 0.9300
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.377 (3) C15—C16 1.336 (3)
C3—H3 0.9300 C15—C18 1.471 (3)
C4—C5 1.377 (3) C16—O3 1.334 (3)
C4—H4 0.9300 C16—C17 1.503 (3)
C5—C6 1.385 (3) C17—O2 1.450 (3)
C5—H5 0.9300 C17—C20 1.517 (4)
C6—N1 1.397 (3) C17—C21 1.524 (4)
C7—N1 1.289 (2) C18—O1 1.201 (3)
C7—S2 1.741 (2) C18—O2 1.360 (3)
C7—S1 1.754 (2) C19—O3 1.433 (3)
C8—C9 1.504 (3) C19—H19A 0.9600
C8—S2 1.820 (2) C19—H19B 0.9600
C8—H8A 0.9700 C19—H19C 0.9600
C8—H8B 0.9700 C20—H20A 0.9600
C9—C14 1.387 (3) C20—H20B 0.9600
C9—C10 1.406 (3) C20—H20C 0.9600
C10—C11 1.390 (3) C21—H21A 0.9600
C10—C15 1.480 (3) C21—H21B 0.9600
C11—C12 1.378 (3) C21—H21C 0.9600
C11—H11 0.9300
C2—C1—C6 121.1 (2) C13—C14—C9 121.5 (2)
C2—C1—S1 129.24 (18) C13—C14—H14 119.3
C6—C1—S1 109.60 (16) C9—C14—H14 119.3
C3—C2—C1 117.8 (2) C16—C15—C18 105.53 (19)
C3—C2—H2 121.1 C16—C15—C10 134.4 (2)
C1—C2—H2 121.1 C18—C15—C10 120.01 (19)
C2—C3—C4 121.6 (2) O3—C16—C15 133.6 (2)
C2—C3—H3 119.2 O3—C16—C17 114.12 (19)
C4—C3—H3 119.2 C15—C16—C17 112.3 (2)
C3—C4—C5 121.4 (2) O2—C17—C16 102.18 (18)
C3—C4—H4 119.3 O2—C17—C20 107.9 (2)
C5—C4—H4 119.3 C16—C17—C20 112.3 (2)
C4—C5—C6 118.3 (2) O2—C17—C21 107.9 (2)
C4—C5—H5 120.8 C16—C17—C21 112.4 (2)
C6—C5—H5 120.8 C20—C17—C21 113.3 (2)
C5—C6—N1 124.9 (2) O1—C18—O2 120.9 (2)
C5—C6—C1 119.8 (2) O1—C18—C15 129.0 (2)
N1—C6—C1 115.26 (18) O2—C18—C15 110.17 (19)
N1—C7—S2 126.65 (17) O3—C19—H19A 109.5
N1—C7—S1 116.90 (16) O3—C19—H19B 109.5
S2—C7—S1 116.43 (12) H19A—C19—H19B 109.5
C9—C8—S2 113.56 (14) O3—C19—H19C 109.5
C9—C8—H8A 108.9 H19A—C19—H19C 109.5
S2—C8—H8A 108.9 H19B—C19—H19C 109.5
C9—C8—H8B 108.9 C17—C20—H20A 109.5
S2—C8—H8B 108.9 C17—C20—H20B 109.5
H8A—C8—H8B 107.7 H20A—C20—H20B 109.5
C14—C9—C10 118.79 (19) C17—C20—H20C 109.5
C14—C9—C8 120.27 (18) H20A—C20—H20C 109.5
C10—C9—C8 120.93 (18) H20B—C20—H20C 109.5
C11—C10—C9 118.73 (19) C17—C21—H21A 109.5
C11—C10—C15 119.70 (18) C17—C21—H21B 109.5
C9—C10—C15 121.48 (18) H21A—C21—H21B 109.5
C12—C11—C10 121.7 (2) C17—C21—H21C 109.5
C12—C11—H11 119.2 H21A—C21—H21C 109.5
C10—C11—H11 119.2 H21B—C21—H21C 109.5
C11—C12—C13 119.5 (2) C7—N1—C6 109.71 (18)
C11—C12—H12 120.3 C18—O2—C17 109.83 (17)
C13—C12—H12 120.3 C16—O3—C19 119.67 (17)
C14—C13—C12 119.9 (2) C1—S1—C7 88.52 (10)
C14—C13—H13 120.1 C7—S2—C8 101.71 (10)
C12—C13—H13 120.1
C6—C1—C2—C3 −0.3 (3) C18—C15—C16—C17 −1.3 (3)
S1—C1—C2—C3 177.37 (19) C10—C15—C16—C17 175.3 (2)
C1—C2—C3—C4 0.2 (4) O3—C16—C17—O2 −178.22 (19)
C2—C3—C4—C5 −0.4 (4) C15—C16—C17—O2 1.5 (3)
C3—C4—C5—C6 0.7 (4) O3—C16—C17—C20 −62.8 (3)
C4—C5—C6—N1 −178.7 (2) C15—C16—C17—C20 117.0 (3)
C4—C5—C6—C1 −0.8 (3) O3—C16—C17—C21 66.4 (3)
C2—C1—C6—C5 0.6 (3) C15—C16—C17—C21 −113.8 (2)
S1—C1—C6—C5 −177.46 (16) C16—C15—C18—O1 −179.5 (2)
C2—C1—C6—N1 178.74 (18) C10—C15—C18—O1 3.3 (4)
S1—C1—C6—N1 0.6 (2) C16—C15—C18—O2 0.5 (2)
S2—C8—C9—C14 114.53 (19) C10—C15—C18—O2 −176.70 (18)
S2—C8—C9—C10 −64.9 (2) S2—C7—N1—C6 −177.70 (14)
C14—C9—C10—C11 −0.3 (3) S1—C7—N1—C6 0.6 (2)
C8—C9—C10—C11 179.14 (18) C5—C6—N1—C7 177.21 (19)
C14—C9—C10—C15 176.32 (18) C1—C6—N1—C7 −0.8 (2)
C8—C9—C10—C15 −4.2 (3) O1—C18—O2—C17 −179.5 (2)
C9—C10—C11—C12 0.4 (3) C15—C18—O2—C17 0.5 (3)
C15—C10—C11—C12 −176.34 (19) C16—C17—O2—C18 −1.1 (3)
C10—C11—C12—C13 0.0 (3) C20—C17—O2—C18 −119.7 (2)
C11—C12—C13—C14 −0.4 (3) C21—C17—O2—C18 117.5 (2)
C12—C13—C14—C9 0.4 (3) C15—C16—O3—C19 −4.9 (4)
C10—C9—C14—C13 −0.1 (3) C17—C16—O3—C19 174.8 (2)
C8—C9—C14—C13 −179.52 (19) C2—C1—S1—C7 −178.2 (2)
C11—C10—C15—C16 −71.7 (3) C6—C1—S1—C7 −0.26 (14)
C9—C10—C15—C16 111.7 (3) N1—C7—S1—C1 −0.19 (15)
C11—C10—C15—C18 104.6 (2) S2—C7—S1—C1 178.27 (12)
C9—C10—C15—C18 −72.1 (3) N1—C7—S2—C8 −6.61 (19)
C18—C15—C16—O3 178.4 (2) S1—C7—S2—C8 175.11 (10)
C10—C15—C16—O3 −5.0 (4) C9—C8—S2—C7 −80.97 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.56 3.302 (3) 137

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2376).

References

  1. Brantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Disp. 32, 1392–1401. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Iannazzo, D., Piperno, A., Romeo, G., Romeo, R., Chiacchio, U., Rescifina, A., Balestrieri, E., Macchi, B., Mastino, A. & Cortese, R. (2008). Bioorg. Med. Chem. 16, 9610–9615. [DOI] [PubMed]
  4. Palmer, P. J., Trigg, R. B. & &Warrington, J. V. (1971). J. Med. Chem. 14, 248–251. [DOI] [PubMed]
  5. Sheldrick, G. M. (2005). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhao, P. L., Wang, F., Huang, W., Chen, Q. & Liu, Z. M. (2010). Chin. J. Org. Chem. 30, 1567–1573.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022404/im2376sup1.cif

e-68-o1854-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022404/im2376Isup2.hkl

e-68-o1854-Isup2.hkl (186.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022404/im2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES