Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1855. doi: 10.1107/S1600536812022416

5-Methyl-3,3-bis­(4-methyl­piperazin-1-yl)-1-[2-(4-methyl­piperazin-1-yl)eth­yl]indolin-2-one

Hui-Hui Lin a, Xiao-Lin Zheng a, Sheng-Li Cao a,*
PMCID: PMC3379422  PMID: 22719620

Abstract

In the title compound, C26H43N7O, each piperazine ring adopts a chair conformation. Two 1-methyl­piperazine rings bond to one Csp 3 of the pyrrole ring via the piperazine N atoms, while the third one links to the N atom of the indolin-2-one unit through a flexible ethyl group with an almost syn conformation. In the crystal, mol­ecules are connected through methyl­ene–carbonyl C—H⋯O inter­actions into an infinite chain along the c axis. The almost parallel arrays are stacked, forming a three-dimensional framework.

Related literature  

For the background to indoline-2,3-dione and its derivatives, see Chiyanzu et al. (2005); Solomon et al. (2009); Sriram et al. (2004). For a related structure, see: Lin et al. (2012).graphic file with name e-68-o1855-scheme1.jpg

Experimental  

Crystal data  

  • C26H43N7O

  • M r = 469.67

  • Monoclinic, Inline graphic

  • a = 15.9433 (8) Å

  • b = 14.4097 (6) Å

  • c = 12.5310 (6) Å

  • β = 108.774 (3)°

  • V = 2725.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.33 × 0.21 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.613, T max = 0.746

  • 17378 measured reflections

  • 4785 independent reflections

  • 3332 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.129

  • S = 1.03

  • 4785 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022416/zj2076sup1.cif

e-68-o1855-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022416/zj2076Isup2.hkl

e-68-o1855-Isup2.hkl (234.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022416/zj2076Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O1i 0.97 2.64 3.388 (2) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KZ201210028035) for financial support.

supplementary crystallographic information

Comment

Mannich base derivatives of indoline-2,3-dione (isatin) exhibit antibacterial (Chiyanzu et al., 2005), anti-HIV (Sriram et al., 2004) and anticancer activity (Solomon et al., 2009).Recently, we obtained an isatin derivative with an flexible ethylene linker between the N atom of the isatin moiety and the amine group of the morpholine through the reaction of 1-(2-bromoethyl)-5-methylindoline-2,3-dione with excess of morpholine, namely 5-methyl-3,3-bis(morpholin-4-yl)-1-[2(morpholin-4-yl)ethyl] -2,3-dihydro-1H-indol-2-one. As a continue research on the synthesis of indole-2,3-dione(isatin) derivatives, herein we report the synthesis and crystal structure of a new compound based on indoline-2,3-dione through the reaction of 1-(2-bromoethyl)-5-methylindoline-2,3-dione with 1-methylpiperazine, namely 5-methyl-3,3-bis(4-methylpiperazin-1-yl)-1-(2-(4-methylpiperazin-1-yl)ethyl) indolin-2-one.

In the title compound, each piperazine ring adopts a chair conformation. Two 1-methylpiperazine rings bond to one C8(sp3) of the pyrrole ring via the piperazine N atoms (N2, N6), while the third one links to the N1 atom of indolin-2-one moiety through a flexible ethyl group with an almost syn conformation (N1-C15-C16-N5 torsion angle of 58.0 (3)°, as shown in Fig. 1). This steric configuration is similar to that of 5-methyl-3,3-bis(morpholin-4-yl)-1-[2(morpholin-4-yl)ethyl] -2,3-dihydro-1H-indol-2-one (59.7 (3)°) reported by us recently (Lin et al., 2012). Through C19—H19b(methylene)···O2i(carbonyl) interactions(see Table 1), the molecules are interconnected and arranged into an array along the c direction (i x, -y + 0.5, z +0.5), as shown in Fig. 2. The almost parallel arrays are stacked to form a three-dimensional framework (Fig. 3)

Experimental

To a solution of 1-(2-bromoethyl)-5-methylindoline-2,3-dione (0.27 g, 1 mmol) in N,N-dimethylformamide (5 ml) was added dropwise 1-methylpiperazine (0.60 g, 6 mmol). The mixture was stirred at 80–90°C for 3 h. The colorless crystals of the title compound were deposited by evaporation of the resulting solution in room temperature for one day (m.p. 401.2–403.0 K; yield 45%).

Refinement

All H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on their respective carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C)aryl/methylene.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atomic numbering scheme. The displacement ellipsoids of the non-hydrogen atoms are shown at the 30% probability level.

Fig. 2.

Fig. 2.

The array of the title compound along the c direction. The red-dashed lines indicate C19—H19b···O2i interactions (i x, -y + 0.5, z + 0.5).

Fig. 3.

Fig. 3.

View down the c direction of the stacking structure of the title compound. The stacking structures are shown with different color for clarity.

Crystal data

C26H43N7O F(000) = 1024
Mr = 469.67 Dx = 1.145 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 233 reflections
a = 15.9433 (8) Å θ = 2.2–27.0°
b = 14.4097 (6) Å µ = 0.07 mm1
c = 12.5310 (6) Å T = 296 K
β = 108.774 (3)° Block, colorless
V = 2725.7 (2) Å3 0.33 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4785 independent reflections
Radiation source: fine-focus sealed tube 3332 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −18→12
Tmin = 0.613, Tmax = 0.746 k = −15→17
17378 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.4418P] P = (Fo2 + 2Fc2)/3
4785 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.61856 (8) 0.42163 (9) 0.51428 (11) 0.0505 (4)
N1 0.63105 (9) 0.48564 (10) 0.68622 (13) 0.0417 (4)
N2 0.81475 (9) 0.38396 (9) 0.65785 (12) 0.0382 (4)
N3 0.84094 (11) 0.18704 (11) 0.66137 (14) 0.0508 (4)
N4 0.56630 (11) 0.10611 (11) 0.64539 (14) 0.0509 (4)
N5 0.56530 (10) 0.29754 (10) 0.71078 (12) 0.0445 (4)
N6 0.78671 (10) 0.52537 (10) 0.55620 (12) 0.0426 (4)
N7 0.83904 (12) 0.65751 (12) 0.42139 (14) 0.0594 (5)
C1 0.93336 (16) 0.62601 (16) 1.02535 (18) 0.0685 (7)
H1A 0.9181 0.6508 1.0878 0.103*
H1B 0.9600 0.6738 0.9936 0.103*
H1C 0.9745 0.5758 1.0509 0.103*
C2 0.85101 (14) 0.59104 (13) 0.93714 (16) 0.0508 (5)
C3 0.76872 (15) 0.59731 (14) 0.95242 (18) 0.0567 (6)
H3A 0.7651 0.6244 1.0182 0.068*
C4 0.69174 (14) 0.56483 (13) 0.87348 (17) 0.0516 (5)
H4A 0.6373 0.5694 0.8856 0.062*
C5 0.69861 (12) 0.52560 (12) 0.77654 (15) 0.0411 (4)
C6 0.77938 (12) 0.51941 (11) 0.75634 (15) 0.0385 (4)
C7 0.85514 (13) 0.55156 (12) 0.83746 (15) 0.0457 (5)
H7A 0.9095 0.5467 0.8253 0.055*
C8 0.76536 (11) 0.47217 (12) 0.64355 (14) 0.0382 (4)
C9 0.66284 (12) 0.45605 (12) 0.60356 (15) 0.0395 (4)
C10 0.89282 (18) 0.10229 (16) 0.6758 (2) 0.0817 (8)
H10A 0.8837 0.0659 0.7352 0.123*
H10B 0.9545 0.1177 0.6947 0.123*
H10C 0.8746 0.0674 0.6069 0.123*
C14 0.80539 (13) 0.32577 (12) 0.74919 (16) 0.0457 (5)
H14A 0.7441 0.3069 0.7319 0.055*
H14B 0.8220 0.3611 0.8188 0.055*
C12 0.79338 (14) 0.32871 (14) 0.55410 (16) 0.0529 (5)
H12A 0.8012 0.3663 0.4938 0.064*
H12B 0.7319 0.3092 0.5320 0.064*
C13 0.86357 (14) 0.24095 (14) 0.76392 (16) 0.0529 (5)
H13A 0.9251 0.2600 0.7847 0.063*
H13B 0.8566 0.2029 0.8244 0.063*
C11 0.85262 (15) 0.24454 (14) 0.57235 (17) 0.0575 (6)
H11A 0.8384 0.2089 0.5031 0.069*
H11B 0.9140 0.2641 0.5924 0.069*
C21 0.61197 (17) 0.03109 (15) 0.6078 (2) 0.0715 (7)
H21A 0.6241 −0.0186 0.6616 0.107*
H21B 0.6666 0.0540 0.6012 0.107*
H21C 0.5751 0.0087 0.5358 0.107*
C19 0.62220 (14) 0.13991 (14) 0.75484 (17) 0.0523 (5)
H19A 0.6796 0.1574 0.7500 0.063*
H19B 0.6312 0.0905 0.8100 0.063*
C20 0.58116 (14) 0.22236 (14) 0.79314 (16) 0.0536 (5)
H20A 0.5256 0.2040 0.8030 0.064*
H20B 0.6204 0.2439 0.8653 0.064*
C18 0.54742 (15) 0.18231 (14) 0.56412 (17) 0.0555 (5)
H18A 0.5075 0.1606 0.4925 0.067*
H18B 0.6021 0.2019 0.5525 0.067*
C17 0.50618 (13) 0.26400 (14) 0.60349 (16) 0.0526 (5)
H17A 0.4948 0.3133 0.5479 0.063*
H17B 0.4501 0.2456 0.6118 0.063*
C16 0.53429 (13) 0.38064 (13) 0.75112 (18) 0.0516 (5)
H16A 0.5688 0.3899 0.8297 0.062*
H16B 0.4730 0.3717 0.7470 0.062*
C15 0.54066 (12) 0.46790 (13) 0.68498 (17) 0.0498 (5)
H15A 0.5025 0.4610 0.6076 0.060*
H15B 0.5198 0.5207 0.7172 0.060*
C22 0.73461 (14) 0.60954 (14) 0.51764 (18) 0.0550 (5)
H22A 0.7543 0.6581 0.5738 0.066*
H22B 0.6725 0.5973 0.5061 0.066*
C25 0.87969 (13) 0.54758 (15) 0.57798 (18) 0.0558 (5)
H25A 0.9160 0.4938 0.6086 0.067*
H25B 0.8973 0.5975 0.6325 0.067*
C26 0.8496 (2) 0.68403 (19) 0.3141 (2) 0.0871 (8)
H26A 0.8137 0.7375 0.2846 0.131*
H26B 0.8315 0.6336 0.2617 0.131*
H26C 0.9107 0.6985 0.3254 0.131*
C24 0.89265 (16) 0.57653 (16) 0.4690 (2) 0.0669 (6)
H24A 0.9547 0.5908 0.4823 0.080*
H24B 0.8764 0.5256 0.4156 0.080*
C23 0.74686 (15) 0.63994 (15) 0.40848 (18) 0.0606 (6)
H23A 0.7244 0.5921 0.3520 0.073*
H23B 0.7128 0.6960 0.3821 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0457 (8) 0.0621 (8) 0.0380 (8) −0.0015 (6) 0.0053 (6) −0.0015 (7)
N1 0.0393 (8) 0.0425 (8) 0.0440 (9) 0.0020 (7) 0.0145 (7) −0.0015 (7)
N2 0.0452 (9) 0.0371 (8) 0.0313 (8) 0.0021 (6) 0.0110 (7) 0.0003 (7)
N3 0.0609 (10) 0.0404 (9) 0.0488 (10) 0.0074 (8) 0.0145 (8) −0.0025 (8)
N4 0.0605 (10) 0.0466 (9) 0.0479 (10) −0.0058 (8) 0.0206 (8) −0.0001 (8)
N5 0.0497 (9) 0.0447 (9) 0.0377 (9) −0.0012 (7) 0.0122 (7) 0.0013 (8)
N6 0.0429 (9) 0.0427 (8) 0.0428 (9) 0.0008 (7) 0.0145 (7) 0.0079 (7)
N7 0.0748 (12) 0.0513 (10) 0.0556 (11) −0.0103 (9) 0.0261 (10) 0.0090 (9)
C1 0.0831 (16) 0.0589 (13) 0.0493 (13) −0.0106 (12) 0.0016 (12) −0.0094 (11)
C2 0.0689 (14) 0.0371 (10) 0.0406 (11) −0.0035 (9) 0.0097 (10) −0.0022 (9)
C3 0.0830 (16) 0.0438 (11) 0.0445 (12) −0.0027 (11) 0.0225 (12) −0.0111 (10)
C4 0.0633 (13) 0.0445 (11) 0.0530 (12) 0.0023 (10) 0.0270 (11) −0.0069 (10)
C5 0.0499 (11) 0.0331 (9) 0.0404 (11) 0.0029 (8) 0.0146 (9) −0.0004 (8)
C6 0.0443 (10) 0.0337 (9) 0.0366 (10) 0.0010 (8) 0.0118 (8) 0.0000 (8)
C7 0.0499 (11) 0.0401 (10) 0.0442 (11) −0.0021 (8) 0.0111 (9) −0.0003 (9)
C8 0.0401 (10) 0.0388 (9) 0.0353 (10) 0.0005 (8) 0.0118 (8) −0.0003 (8)
C9 0.0428 (10) 0.0382 (9) 0.0358 (10) 0.0028 (8) 0.0102 (9) 0.0049 (9)
C10 0.109 (2) 0.0567 (14) 0.0793 (18) 0.0317 (14) 0.0299 (16) 0.0022 (13)
C14 0.0561 (12) 0.0420 (10) 0.0409 (11) 0.0034 (9) 0.0182 (9) 0.0005 (9)
C12 0.0704 (14) 0.0486 (11) 0.0365 (11) 0.0082 (10) 0.0125 (10) −0.0037 (10)
C13 0.0628 (13) 0.0489 (11) 0.0428 (11) 0.0087 (10) 0.0113 (10) 0.0053 (10)
C11 0.0729 (14) 0.0542 (12) 0.0475 (12) 0.0109 (11) 0.0224 (11) −0.0067 (11)
C21 0.0855 (17) 0.0564 (13) 0.0788 (17) −0.0015 (12) 0.0349 (14) −0.0081 (13)
C19 0.0576 (12) 0.0496 (11) 0.0488 (12) −0.0002 (10) 0.0160 (10) 0.0078 (10)
C20 0.0658 (13) 0.0564 (12) 0.0389 (11) −0.0026 (10) 0.0175 (10) 0.0048 (10)
C18 0.0689 (14) 0.0559 (12) 0.0400 (11) −0.0113 (11) 0.0152 (10) −0.0015 (10)
C17 0.0530 (12) 0.0550 (12) 0.0439 (11) −0.0058 (10) 0.0072 (10) 0.0039 (10)
C16 0.0478 (11) 0.0562 (12) 0.0568 (13) −0.0028 (9) 0.0251 (10) −0.0066 (11)
C15 0.0408 (11) 0.0527 (12) 0.0568 (12) 0.0077 (9) 0.0169 (9) 0.0004 (10)
C22 0.0590 (13) 0.0463 (11) 0.0610 (14) 0.0050 (10) 0.0210 (11) 0.0112 (11)
C25 0.0480 (12) 0.0617 (13) 0.0589 (13) −0.0020 (10) 0.0189 (10) 0.0096 (11)
C26 0.121 (2) 0.0796 (18) 0.0699 (17) −0.0179 (16) 0.0443 (16) 0.0146 (14)
C24 0.0666 (14) 0.0676 (14) 0.0772 (16) −0.0018 (12) 0.0379 (13) 0.0128 (13)
C23 0.0716 (15) 0.0481 (12) 0.0570 (14) −0.0014 (11) 0.0136 (11) 0.0137 (11)

Geometric parameters (Å, º)

O1—C9 1.220 (2) C14—H14A 0.9700
N1—C9 1.360 (2) C14—H14B 0.9700
N1—C5 1.410 (2) C12—C11 1.509 (3)
N1—C15 1.459 (2) C12—H12A 0.9700
N2—C14 1.465 (2) C12—H12B 0.9700
N2—C12 1.468 (2) C13—H13A 0.9700
N2—C8 1.476 (2) C13—H13B 0.9700
N3—C13 1.445 (2) C11—H11A 0.9700
N3—C11 1.449 (3) C11—H11B 0.9700
N3—C10 1.453 (3) C21—H21A 0.9600
N4—C19 1.458 (3) C21—H21B 0.9600
N4—C18 1.461 (2) C21—H21C 0.9600
N4—C21 1.464 (3) C19—C20 1.507 (3)
N5—C16 1.447 (2) C19—H19A 0.9700
N5—C17 1.454 (2) C19—H19B 0.9700
N5—C20 1.461 (2) C20—H20A 0.9700
N6—C25 1.454 (2) C20—H20B 0.9700
N6—C22 1.462 (2) C18—C17 1.507 (3)
N6—C8 1.464 (2) C18—H18A 0.9700
N7—C23 1.448 (3) C18—H18B 0.9700
N7—C24 1.456 (3) C17—H17A 0.9700
N7—C26 1.459 (3) C17—H17B 0.9700
C1—C2 1.505 (3) C16—C15 1.527 (3)
C1—H1A 0.9600 C16—H16A 0.9700
C1—H1B 0.9600 C16—H16B 0.9700
C1—H1C 0.9600 C15—H15A 0.9700
C2—C3 1.388 (3) C15—H15B 0.9700
C2—C7 1.393 (3) C22—C23 1.508 (3)
C3—C4 1.387 (3) C22—H22A 0.9700
C3—H3A 0.9300 C22—H22B 0.9700
C4—C5 1.376 (3) C25—C24 1.505 (3)
C4—H4A 0.9300 C25—H25A 0.9700
C5—C6 1.393 (2) C25—H25B 0.9700
C6—C7 1.384 (2) C26—H26A 0.9600
C6—C8 1.519 (2) C26—H26B 0.9600
C7—H7A 0.9300 C26—H26C 0.9600
C8—C9 1.565 (2) C24—H24A 0.9700
C10—H10A 0.9600 C24—H24B 0.9700
C10—H10B 0.9600 C23—H23A 0.9700
C10—H10C 0.9600 C23—H23B 0.9700
C14—C13 1.509 (3)
C9—N1—C5 111.34 (14) N3—C11—C12 110.32 (17)
C9—N1—C15 123.09 (16) N3—C11—H11A 109.6
C5—N1—C15 125.23 (15) C12—C11—H11A 109.6
C14—N2—C12 109.19 (14) N3—C11—H11B 109.6
C14—N2—C8 113.78 (13) C12—C11—H11B 109.6
C12—N2—C8 113.39 (13) H11A—C11—H11B 108.1
C13—N3—C11 108.67 (15) N4—C21—H21A 109.5
C13—N3—C10 111.86 (17) N4—C21—H21B 109.5
C11—N3—C10 111.54 (17) H21A—C21—H21B 109.5
C19—N4—C18 109.32 (15) N4—C21—H21C 109.5
C19—N4—C21 109.44 (17) H21A—C21—H21C 109.5
C18—N4—C21 110.04 (16) H21B—C21—H21C 109.5
C16—N5—C17 113.91 (16) N4—C19—C20 111.48 (17)
C16—N5—C20 111.57 (15) N4—C19—H19A 109.3
C17—N5—C20 108.67 (15) C20—C19—H19A 109.3
C25—N6—C22 108.43 (15) N4—C19—H19B 109.3
C25—N6—C8 116.32 (14) C20—C19—H19B 109.3
C22—N6—C8 115.95 (14) H19A—C19—H19B 108.0
C23—N7—C24 110.28 (16) N5—C20—C19 110.71 (16)
C23—N7—C26 110.92 (19) N5—C20—H20A 109.5
C24—N7—C26 111.1 (2) C19—C20—H20A 109.5
C2—C1—H1A 109.5 N5—C20—H20B 109.5
C2—C1—H1B 109.5 C19—C20—H20B 109.5
H1A—C1—H1B 109.5 H20A—C20—H20B 108.1
C2—C1—H1C 109.5 N4—C18—C17 111.87 (16)
H1A—C1—H1C 109.5 N4—C18—H18A 109.2
H1B—C1—H1C 109.5 C17—C18—H18A 109.2
C3—C2—C7 118.01 (18) N4—C18—H18B 109.2
C3—C2—C1 121.10 (19) C17—C18—H18B 109.2
C7—C2—C1 120.9 (2) H18A—C18—H18B 107.9
C4—C3—C2 122.57 (19) N5—C17—C18 109.94 (16)
C4—C3—H3A 118.7 N5—C17—H17A 109.7
C2—C3—H3A 118.7 C18—C17—H17A 109.7
C5—C4—C3 117.70 (19) N5—C17—H17B 109.7
C5—C4—H4A 121.1 C18—C17—H17B 109.7
C3—C4—H4A 121.1 H17A—C17—H17B 108.2
C4—C5—C6 121.85 (18) N5—C16—C15 113.69 (16)
C4—C5—N1 128.26 (17) N5—C16—H16A 108.8
C6—C5—N1 109.88 (15) C15—C16—H16A 108.8
C7—C6—C5 118.97 (17) N5—C16—H16B 108.8
C7—C6—C8 131.72 (17) C15—C16—H16B 108.8
C5—C6—C8 109.27 (15) H16A—C16—H16B 107.7
C6—C7—C2 120.87 (18) N1—C15—C16 112.12 (15)
C6—C7—H7A 119.6 N1—C15—H15A 109.2
C2—C7—H7A 119.6 C16—C15—H15A 109.2
N6—C8—N2 107.37 (13) N1—C15—H15B 109.2
N6—C8—C6 117.46 (14) C16—C15—H15B 109.2
N2—C8—C6 111.11 (14) H15A—C15—H15B 107.9
N6—C8—C9 107.98 (13) N6—C22—C23 108.37 (17)
N2—C8—C9 111.87 (14) N6—C22—H22A 110.0
C6—C8—C9 100.97 (14) C23—C22—H22A 110.0
O1—C9—N1 125.35 (17) N6—C22—H22B 110.0
O1—C9—C8 126.21 (16) C23—C22—H22B 110.0
N1—C9—C8 108.44 (15) H22A—C22—H22B 108.4
N3—C10—H10A 109.5 N6—C25—C24 108.67 (17)
N3—C10—H10B 109.5 N6—C25—H25A 110.0
H10A—C10—H10B 109.5 C24—C25—H25A 110.0
N3—C10—H10C 109.5 N6—C25—H25B 110.0
H10A—C10—H10C 109.5 C24—C25—H25B 110.0
H10B—C10—H10C 109.5 H25A—C25—H25B 108.3
N2—C14—C13 110.23 (15) N7—C26—H26A 109.5
N2—C14—H14A 109.6 N7—C26—H26B 109.5
C13—C14—H14A 109.6 H26A—C26—H26B 109.5
N2—C14—H14B 109.6 N7—C26—H26C 109.5
C13—C14—H14B 109.6 H26A—C26—H26C 109.5
H14A—C14—H14B 108.1 H26B—C26—H26C 109.5
N2—C12—C11 110.25 (16) N7—C24—C25 111.09 (19)
N2—C12—H12A 109.6 N7—C24—H24A 109.4
C11—C12—H12A 109.6 C25—C24—H24A 109.4
N2—C12—H12B 109.6 N7—C24—H24B 109.4
C11—C12—H12B 109.6 C25—C24—H24B 109.4
H12A—C12—H12B 108.1 H24A—C24—H24B 108.0
N3—C13—C14 111.04 (16) N7—C23—C22 111.87 (18)
N3—C13—H13A 109.4 N7—C23—H23A 109.2
C14—C13—H13A 109.4 C22—C23—H23A 109.2
N3—C13—H13B 109.4 N7—C23—H23B 109.2
C14—C13—H13B 109.4 C22—C23—H23B 109.2
H13A—C13—H13B 108.0 H23A—C23—H23B 107.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19B···O1i 0.97 2.64 3.388 (2) 135

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2076).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison,Wisconsin, USA.
  2. Chiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthalc, P. J. & Chibalea, K. (2005). Bioorg. Med. Chem. 13, 3249–3261. [DOI] [PubMed]
  3. Lin, H.-H., Wu, W.-Y., Zhang, J.-J. & Cao, S.-L. (2012). Acta Cryst. E68, o821. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Solomon, V. R., Hua, C. & Lee, H. (2009). Bioorg. Med. Chem. 17, 7585–7592. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Sriram, D., Bal, T. R. & Yogeeswari, P. (2004). Bioorg. Med. Chem. 12, 5865–5873. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022416/zj2076sup1.cif

e-68-o1855-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022416/zj2076Isup2.hkl

e-68-o1855-Isup2.hkl (234.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022416/zj2076Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES