Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1860. doi: 10.1107/S160053681202185X

3-Ethyl-6-(4-fluoro­phen­yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazine

S Jeyaseelan a, H C Devarajegowda a,*, R Sathishkumar b, Agnes Sylvia D’souza c, Alphonsus D’souza c
PMCID: PMC3379427  PMID: 22719625

Abstract

In the title compound, C12H11FN4S, the thia­diazine ring adopts a twist-boat conformation. The dihedral angle between the triazolothia­diazine system and the benzene ring is 10.54 (9)°. The crystal structure is characterized by C—H⋯N hydrogen bonds. The crystal packing also exhibits π–π inter­actions, with a centroid–centroid distance of 3.6348 (15) Å.

Related literature  

For biological properties of triazolothia­diazines, see: Feng et al. (1992); Mohan & Anjaneyalu (1987); Holla et al. (2001); Walser et al. (1991); Hirota et al. (1991); Bradbury & Rivett (1991); Heindel & Reid (1980); Heidelberger et al. (1957). For related structures, see: Andersson & MacGowan (2003); Novak et al. (2006).graphic file with name e-68-o1860-scheme1.jpg

Experimental  

Crystal data  

  • C12H11FN4S

  • M r = 262.31

  • Monoclinic, Inline graphic

  • a = 13.322 (3) Å

  • b = 13.017 (3) Å

  • c = 7.1912 (16) Å

  • β = 105.308 (4)°

  • V = 1202.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.770, T max = 1.000

  • 11097 measured reflections

  • 2119 independent reflections

  • 1828 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.06

  • 2119 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202185X/bt5922sup1.cif

e-68-o1860-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202185X/bt5922Isup2.hkl

e-68-o1860-Isup2.hkl (102.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202185X/bt5922Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.93 2.51 3.428 (3) 172
C8—H8A⋯N1ii 0.97 2.50 3.410 (3) 156
C8—H8B⋯N2i 0.97 2.30 3.228 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection. SJ thanks the University Grants Commission (India), for the award of a Teacher Fellowship under the Faculty Development Programme (UGC-SWRO File No.: FIP/11 th Plan/KAMY006 TF, Dt.: 06/08/2010).

supplementary crystallographic information

Comment

Triazoles fused with six membered ring systems are found to be associated with diverse pharmacological activity. A number of thiadiazines have been shown to exhibit antimicrobial (Feng et al., 1992) and dieretic properties (Mohan et al., 1987) and also serves as photographic couplers (Holla et al., 2001). The analgesic, anti-asthmatic, diuretic, anti-hypertensive, anti-cholinergic, antibacterial, antifungal, anti-inflammatory, hypoglycemic, anti-tubercular and antiviral properties exhibited by various N-bridged heterocycles derived from a variety of 4-amino-5-mercapto-1,2,4-triazoles, have made them an important chemotherapeutic agents (Walser et al., 1991; Hirota et al., 1991; Bradbury et al., 1991). The 1,2,4- triazoles nucleus has recently been incorporated into a wide variety of therapeutically interesting drugs including H1/H2 histamine receptor blockers, cholinesterase active agents, CNS stimulants, anti-anxiety agents and sedatives (Heindel et al., 1980). Further fluorinated heterocycles have been shown to possess wide variety of biocidal activities. Compounds such as fluorouracil and fluoroquinolone have been used as anticancer agents and antibiotics (Heidelberger et al., 1957; Andersson et al., 2003; Novak et al., 2006).

The asymmetric unit of 3-ethyl-6-(4-fluorophenyl)-7H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine is shown in Fig. 1. The triazolo-thiadiazine ring system is not planar. The dihedral angle between the triazolo-thiadiazine ring system (S1/N1–N4/C7–C10) and the benzene ring (C1–C6) is 10.54 (9)°.

In the crystal structure (Fig. 2), the molecules are connected via intermolecular C1—H1···N2, C8—H8A···N1 and C8—H8B···N2 hydrogen bonds (Table 1). Furthermore, the crystal structure features a π-π interaction, with a centroid-centroid Cg1 (C9/C10/N1–N3) distance of 3.5728 (16) Å.

Experimental

A mixture of triazole (1) (0.01 mol) and p-fluorophenacyl bromide (0.01 mol) in ethanol (25 ml) was heated under reflux for 1–2 hrs. The reaction mixture was cooled to room temparature and neutralized with sodium acetate (5%). The precipitated triazolothiadiazines were collected by filtration, washed with water and recrystallized from ethanol. Yield 82%; m.p.455 K.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of molecules in the title structure.

Crystal data

C12H11FN4S F(000) = 544
Mr = 262.31 Dx = 1.449 Mg m3
Monoclinic, P21/c Melting point: 455 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.322 (3) Å Cell parameters from 2119 reflections
b = 13.017 (3) Å θ = 2.2–25.0°
c = 7.1912 (16) Å µ = 0.27 mm1
β = 105.308 (4)° T = 293 K
V = 1202.8 (4) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2119 independent reflections
Radiation source: fine-focus sealed tube 1828 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω and φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −15→15
Tmin = 0.770, Tmax = 1.000 k = −15→15
11097 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4632P] where P = (Fo2 + 2Fc2)/3
2119 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50854 (4) 0.90687 (4) 0.19250 (9) 0.0542 (2)
F1 0.05432 (12) 1.31988 (11) −0.1252 (2) 0.0845 (5)
N1 0.37247 (14) 0.64191 (13) 0.1417 (3) 0.0511 (5)
N2 0.46299 (14) 0.70215 (13) 0.1828 (3) 0.0550 (5)
N3 0.32718 (12) 0.80332 (11) 0.1211 (2) 0.0397 (4)
N4 0.26399 (12) 0.88834 (12) 0.0605 (2) 0.0403 (4)
C1 0.28158 (17) 1.16575 (16) 0.0713 (3) 0.0534 (6)
H1 0.3526 1.1746 0.1256 0.064*
C2 0.21920 (19) 1.25088 (18) 0.0115 (4) 0.0626 (6)
H2 0.2476 1.3166 0.0253 0.075*
C3 0.11625 (18) 1.23664 (17) −0.0673 (4) 0.0566 (6)
C4 0.07182 (18) 1.14193 (19) −0.0911 (4) 0.0625 (6)
H4 0.0008 1.1346 −0.1464 0.075*
C5 0.13374 (16) 1.05684 (17) −0.0319 (3) 0.0536 (6)
H5 0.1042 0.9916 −0.0479 0.064*
C6 0.24016 (15) 1.06767 (15) 0.0515 (3) 0.0407 (5)
C7 0.30545 (14) 0.97569 (14) 0.1164 (3) 0.0378 (4)
C8 0.41148 (15) 0.98739 (15) 0.2543 (3) 0.0446 (5)
H8A 0.4073 0.9702 0.3833 0.054*
H8B 0.4330 1.0586 0.2552 0.054*
C9 0.43346 (15) 0.79735 (15) 0.1685 (3) 0.0436 (5)
C10 0.29301 (15) 0.70301 (14) 0.1038 (3) 0.0423 (5)
C11 0.18178 (17) 0.67302 (16) 0.0591 (4) 0.0547 (6)
H11A 0.1431 0.7122 −0.0514 0.066*
H11B 0.1548 0.6907 0.1677 0.066*
C12 0.1639 (2) 0.56042 (18) 0.0163 (4) 0.0671 (7)
H12A 0.1819 0.5441 −0.1011 0.101*
H12B 0.0920 0.5443 0.0024 0.101*
H12C 0.2066 0.5210 0.1204 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0360 (3) 0.0450 (3) 0.0800 (4) −0.0006 (2) 0.0126 (3) 0.0070 (3)
F1 0.0731 (10) 0.0583 (9) 0.1191 (13) 0.0317 (8) 0.0204 (9) 0.0218 (8)
N1 0.0518 (11) 0.0354 (9) 0.0640 (12) 0.0038 (8) 0.0113 (9) −0.0002 (8)
N2 0.0464 (10) 0.0411 (10) 0.0745 (13) 0.0081 (8) 0.0108 (9) 0.0033 (9)
N3 0.0371 (8) 0.0311 (8) 0.0479 (9) 0.0031 (7) 0.0060 (7) 0.0004 (7)
N4 0.0357 (9) 0.0329 (9) 0.0489 (10) 0.0036 (7) 0.0053 (7) −0.0006 (7)
C1 0.0437 (12) 0.0385 (12) 0.0739 (15) 0.0028 (9) 0.0084 (10) 0.0023 (10)
C2 0.0622 (15) 0.0361 (12) 0.0880 (18) 0.0041 (11) 0.0175 (13) 0.0021 (11)
C3 0.0581 (14) 0.0450 (13) 0.0682 (15) 0.0194 (11) 0.0194 (11) 0.0112 (11)
C4 0.0413 (12) 0.0615 (15) 0.0780 (16) 0.0107 (11) 0.0039 (11) 0.0074 (13)
C5 0.0426 (12) 0.0425 (12) 0.0702 (15) 0.0008 (9) 0.0049 (10) 0.0036 (10)
C6 0.0404 (11) 0.0367 (10) 0.0443 (11) 0.0030 (8) 0.0099 (9) 0.0008 (8)
C7 0.0364 (10) 0.0350 (10) 0.0414 (10) −0.0004 (8) 0.0091 (8) 0.0005 (8)
C8 0.0394 (11) 0.0332 (10) 0.0550 (12) −0.0019 (8) 0.0013 (9) −0.0002 (9)
C9 0.0383 (10) 0.0400 (11) 0.0511 (12) 0.0050 (9) 0.0091 (9) 0.0035 (9)
C10 0.0483 (11) 0.0312 (10) 0.0446 (11) 0.0006 (9) 0.0071 (9) −0.0015 (8)
C11 0.0498 (13) 0.0416 (12) 0.0682 (14) −0.0055 (10) 0.0075 (11) −0.0017 (10)
C12 0.0722 (17) 0.0486 (13) 0.0808 (17) −0.0161 (12) 0.0210 (14) −0.0076 (12)

Geometric parameters (Å, º)

S1—C9 1.724 (2) C4—C5 1.379 (3)
S1—C8 1.809 (2) C4—H4 0.9300
F1—C3 1.359 (2) C5—C6 1.393 (3)
N1—C10 1.294 (2) C5—H5 0.9300
N1—N2 1.403 (2) C6—C7 1.481 (3)
N2—C9 1.296 (2) C7—C8 1.504 (3)
N3—C9 1.368 (3) C8—H8A 0.9700
N3—C10 1.377 (2) C8—H8B 0.9700
N3—N4 1.389 (2) C10—C11 1.483 (3)
N4—C7 1.282 (2) C11—C12 1.504 (3)
C1—C6 1.383 (3) C11—H11A 0.9700
C1—C2 1.384 (3) C11—H11B 0.9700
C1—H1 0.9300 C12—H12A 0.9600
C2—C3 1.351 (3) C12—H12B 0.9600
C2—H2 0.9300 C12—H12C 0.9600
C3—C4 1.359 (3)
C9—S1—C8 94.03 (9) N4—C7—C8 123.28 (17)
C10—N1—N2 108.10 (16) C6—C7—C8 119.81 (16)
C9—N2—N1 106.96 (17) C7—C8—S1 112.80 (14)
C9—N3—C10 105.32 (16) C7—C8—H8A 109.0
C9—N3—N4 128.67 (16) S1—C8—H8A 109.0
C10—N3—N4 124.63 (15) C7—C8—H8B 109.0
C7—N4—N3 115.66 (15) S1—C8—H8B 109.0
C6—C1—C2 121.1 (2) H8A—C8—H8B 107.8
C6—C1—H1 119.4 N2—C9—N3 110.27 (17)
C2—C1—H1 119.4 N2—C9—S1 128.82 (16)
C3—C2—C1 118.7 (2) N3—C9—S1 120.86 (14)
C3—C2—H2 120.6 N1—C10—N3 109.33 (17)
C1—C2—H2 120.6 N1—C10—C11 126.78 (18)
C2—C3—C4 122.5 (2) N3—C10—C11 123.81 (17)
C2—C3—F1 119.1 (2) C10—C11—C12 113.32 (19)
C4—C3—F1 118.4 (2) C10—C11—H11A 108.9
C3—C4—C5 119.0 (2) C12—C11—H11A 108.9
C3—C4—H4 120.5 C10—C11—H11B 108.9
C5—C4—H4 120.5 C12—C11—H11B 108.9
C4—C5—C6 120.6 (2) H11A—C11—H11B 107.7
C4—C5—H5 119.7 C11—C12—H12A 109.5
C6—C5—H5 119.7 C11—C12—H12B 109.5
C1—C6—C5 118.08 (19) H12A—C12—H12B 109.5
C1—C6—C7 121.91 (18) C11—C12—H12C 109.5
C5—C6—C7 120.01 (18) H12A—C12—H12C 109.5
N4—C7—C6 116.73 (16) H12B—C12—H12C 109.5
C10—N1—N2—C9 0.3 (2) N4—C7—C8—S1 46.9 (2)
C9—N3—N4—C7 −26.4 (3) C6—C7—C8—S1 −138.27 (16)
C10—N3—N4—C7 168.98 (18) C9—S1—C8—C7 −49.59 (16)
C6—C1—C2—C3 −0.1 (4) N1—N2—C9—N3 0.5 (2)
C1—C2—C3—C4 −0.4 (4) N1—N2—C9—S1 −177.06 (16)
C1—C2—C3—F1 179.6 (2) C10—N3—C9—N2 −1.0 (2)
C2—C3—C4—C5 0.3 (4) N4—N3—C9—N2 −167.93 (18)
F1—C3—C4—C5 −179.7 (2) C10—N3—C9—S1 176.72 (15)
C3—C4—C5—C6 0.2 (4) N4—N3—C9—S1 9.8 (3)
C2—C1—C6—C5 0.6 (3) C8—S1—C9—N2 −156.4 (2)
C2—C1—C6—C7 −179.4 (2) C8—S1—C9—N3 26.27 (18)
C4—C5—C6—C1 −0.6 (3) N2—N1—C10—N3 −1.0 (2)
C4—C5—C6—C7 179.3 (2) N2—N1—C10—C11 −177.8 (2)
N3—N4—C7—C6 179.22 (16) C9—N3—C10—N1 1.2 (2)
N3—N4—C7—C8 −5.8 (3) N4—N3—C10—N1 168.80 (17)
C1—C6—C7—N4 −167.62 (19) C9—N3—C10—C11 178.14 (19)
C5—C6—C7—N4 12.5 (3) N4—N3—C10—C11 −14.3 (3)
C1—C6—C7—C8 17.2 (3) N1—C10—C11—C12 −13.0 (3)
C5—C6—C7—C8 −162.73 (19) N3—C10—C11—C12 170.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···N2i 0.93 2.51 3.428 (3) 172
C8—H8A···N1ii 0.97 2.50 3.410 (3) 156
C8—H8B···N2i 0.97 2.30 3.228 (3) 160

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5922).

References

  1. Andersson, M. I. & MacGowan, A. P. (2003). J. Antimicrob. Chemother. 51, 1–11. [DOI] [PubMed]
  2. Bradbury, R. H. & Rivett, J. E. (1991). J. Med. Chem. 34, 151–157. [DOI] [PubMed]
  3. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Feng, X. M., Chen, R. & Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187–194.
  6. Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Greisbach, L., Duschinsky, R., Scnnitzer, R. J., Pleaven, E. & Scheiner, J. (1957). Nature (London), 179, 663–666. [DOI] [PubMed]
  7. Heindel, N. D. & Reid, J. R. (1980). J. Heterocycl. Chem 17, 1087–1088.
  8. Hirota, T., Sasaki, K., Yamamoto, H. & Nakayama, T. (1991). J. Heterocycl. Chem 28, 257–261.
  9. Holla, B. S., Akberali, P. M. & Shivananda, M. K. (2001). Il Farmaco, 56, 919–927. [DOI] [PubMed]
  10. Mohan, J. & Anjaneyalu, G. S. R. (1987). Pol. J. Chem. 61, 547–551.
  11. Novak, M. J., Baum, J. C. & Buhrow, J. A. (2006). Olson. Surf. Sci 600, L269–L273.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Walser, A., Flynn, T. & Mason, C. (1991). J. Heterocycl. Chem 28, 1121–1125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202185X/bt5922sup1.cif

e-68-o1860-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202185X/bt5922Isup2.hkl

e-68-o1860-Isup2.hkl (102.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202185X/bt5922Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES