Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1869. doi: 10.1107/S1600536812022763

N-(3-Chloro-2-methyl­phen­yl)succinamic acid

B Thimme Gowda a,*, Sabine Foro b, U Chaithanya a
PMCID: PMC3379433  PMID: 22719631

Abstract

In the title compound, C11H12ClNO3, the dihedral angle between the benzene ring and the amide group is 44.9 (2)°. In the crystal, mol­ecules form inversion dimers via pairs of O—H⋯O hydrogen bonds. These dimers are further linked into sheets parallel to (013) via N—H⋯O hydrogen bonds.

Related literature  

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012), of N-chloro­aryl­amides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983), Usha & Gowda (2006).graphic file with name e-68-o1869-scheme1.jpg

Experimental  

Crystal data  

  • C11H12ClNO3

  • M r = 241.67

  • Triclinic, Inline graphic

  • a = 4.7672 (9) Å

  • b = 6.297 (1) Å

  • c = 19.135 (3) Å

  • α = 87.24 (1)°

  • β = 83.95 (1)°

  • γ = 88.28 (2)°

  • V = 570.37 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.02 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.881, T max = 0.994

  • 3270 measured reflections

  • 2072 independent reflections

  • 1578 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.127

  • S = 1.20

  • 2072 reflections

  • 152 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022763/bt5924sup1.cif

e-68-o1869-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022763/bt5924Isup2.hkl

e-68-o1869-Isup2.hkl (101.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022763/bt5924Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.83 (2) 1.84 (2) 2.666 (3) 176 (5)
N1—H1N⋯O1ii 0.83 (2) 2.10 (2) 2.905 (3) 163 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under theUGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012); N-chloroarylsulfonamides (Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-Chloro-2-methylphenyl)succinamic acid has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–methyl and meta–Cl in the benzene ring, in contrast to the anti conformation observed between the N—H bond and the meta–Cl in N-(3-chloro-4-methylphenyl)- succinamic acid (I) (Chaithanya et al., 2012).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segments are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups.

The C═O and O—H bonds of the acid groups are in syn position to each other, similar to that observed in (I).

The dihedral angle between the phenyl ring and the amide group is 44.9 (2)°, compared to the values of 40.6 (2)° and 44.9 (3)° in the two independent molecules of (I).

In the crystal, the molecules form centrosymmetric dimers via O-H···O hydrogen bonds. These dimers are further linked into sheets parallel to (0 1 3) via intermolecular N–H···O hydrogen bonds. (Table 1, Fig.2).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 3-chloro-2-methylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloro-2-methyl-aniline. The resultant (the title compound) was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectrum.

Plate like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

All H atoms were located in a difference map. The coordinates of the H atoms bonded to N and O were refined with distance restraints of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å.

The isotropic displacement parameters of all H atoms were set at 1.2 Ueq(C, N, O) or 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H12ClNO3 Z = 2
Mr = 241.67 F(000) = 252
Triclinic, P1 Dx = 1.407 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.7672 (9) Å Cell parameters from 1394 reflections
b = 6.297 (1) Å θ = 3.2–27.9°
c = 19.135 (3) Å µ = 0.33 mm1
α = 87.24 (1)° T = 293 K
β = 83.95 (1)° Plate, colourless
γ = 88.28 (2)° 0.40 × 0.20 × 0.02 mm
V = 570.37 (17) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2072 independent reflections
Radiation source: fine-focus sealed tube 1578 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
Rotation method data acquisition using ω and phi scans θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −5→5
Tmin = 0.881, Tmax = 0.994 k = −7→7
3270 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.6764P] where P = (Fo2 + 2Fc2)/3
2072 reflections (Δ/σ)max = 0.004
152 parameters Δρmax = 0.29 e Å3
2 restraints Δρmin = −0.24 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.7008 (3) 1.2310 (2) 0.02839 (6) 0.0864 (4)
O1 0.0716 (4) 0.7206 (4) 0.30679 (13) 0.0603 (7)
O2 0.5808 (6) 0.1513 (5) 0.42666 (16) 0.0873 (11)
O3 0.2228 (7) 0.1937 (5) 0.50625 (15) 0.0877 (11)
H3O 0.286 (10) 0.084 (5) 0.525 (2) 0.105*
N1 0.5099 (5) 0.8278 (4) 0.26805 (14) 0.0415 (7)
H1N 0.682 (4) 0.810 (5) 0.2711 (17) 0.050*
C1 0.4362 (6) 0.9970 (5) 0.22052 (16) 0.0393 (7)
C2 0.5859 (6) 1.0149 (5) 0.15377 (16) 0.0406 (8)
C3 0.5154 (7) 1.1899 (6) 0.11106 (18) 0.0514 (9)
C4 0.3030 (8) 1.3342 (6) 0.1311 (2) 0.0613 (10)
H4 0.2607 1.4479 0.1009 0.074*
C5 0.1540 (8) 1.3084 (6) 0.1963 (2) 0.0607 (10)
H5 0.0081 1.4037 0.2101 0.073*
C6 0.2212 (7) 1.1408 (5) 0.24147 (18) 0.0492 (9)
H6 0.1222 1.1245 0.2859 0.059*
C7 0.3272 (6) 0.7039 (5) 0.30781 (16) 0.0396 (7)
C8 0.4613 (6) 0.5332 (5) 0.35262 (17) 0.0442 (8)
H8A 0.5407 0.4215 0.3228 0.053*
H8B 0.6147 0.5938 0.3739 0.053*
C9 0.2546 (7) 0.4374 (5) 0.40990 (17) 0.0468 (8)
H9A 0.1956 0.5453 0.4433 0.056*
H9B 0.0886 0.3960 0.3891 0.056*
C10 0.3694 (6) 0.2483 (5) 0.44866 (17) 0.0437 (8)
C11 0.8049 (7) 0.8513 (6) 0.12881 (19) 0.0561 (10)
H11A 0.9893 0.9016 0.1341 0.067*
H11B 0.7911 0.8271 0.0801 0.067*
H11C 0.7743 0.7208 0.1562 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0936 (8) 0.0975 (9) 0.0604 (6) 0.0060 (7) 0.0040 (6) 0.0424 (6)
O1 0.0262 (11) 0.0745 (17) 0.0765 (17) 0.0014 (11) −0.0078 (11) 0.0376 (14)
O2 0.0694 (18) 0.087 (2) 0.090 (2) 0.0396 (16) 0.0279 (16) 0.0509 (17)
O3 0.095 (2) 0.081 (2) 0.0711 (19) 0.0421 (17) 0.0320 (16) 0.0445 (16)
N1 0.0246 (12) 0.0503 (16) 0.0477 (15) 0.0015 (12) −0.0063 (12) 0.0195 (13)
C1 0.0326 (16) 0.0368 (17) 0.0493 (19) −0.0006 (13) −0.0128 (14) 0.0105 (14)
C2 0.0360 (16) 0.0434 (18) 0.0427 (18) −0.0029 (14) −0.0102 (14) 0.0102 (14)
C3 0.051 (2) 0.052 (2) 0.050 (2) −0.0023 (17) −0.0102 (16) 0.0185 (17)
C4 0.066 (2) 0.048 (2) 0.069 (3) 0.0076 (19) −0.019 (2) 0.0244 (19)
C5 0.065 (2) 0.042 (2) 0.075 (3) 0.0200 (18) −0.014 (2) 0.0042 (19)
C6 0.0474 (19) 0.0468 (19) 0.052 (2) 0.0069 (16) −0.0061 (16) 0.0051 (16)
C7 0.0284 (16) 0.0479 (19) 0.0415 (17) 0.0030 (13) −0.0059 (13) 0.0110 (14)
C8 0.0305 (16) 0.0520 (19) 0.0481 (19) 0.0028 (14) −0.0067 (14) 0.0200 (16)
C9 0.0398 (17) 0.050 (2) 0.0474 (19) 0.0075 (15) 0.0019 (15) 0.0169 (16)
C10 0.0350 (17) 0.0481 (19) 0.0450 (18) 0.0026 (14) 0.0019 (14) 0.0148 (15)
C11 0.050 (2) 0.063 (2) 0.052 (2) 0.0112 (18) 0.0030 (17) 0.0125 (18)

Geometric parameters (Å, º)

Cl1—C3 1.741 (4) C4—H4 0.9300
O1—C7 1.222 (3) C5—C6 1.383 (5)
O2—C10 1.210 (4) C5—H5 0.9300
O3—C10 1.279 (4) C6—H6 0.9300
O3—H3O 0.831 (19) C7—C8 1.512 (4)
N1—C7 1.338 (4) C8—C9 1.510 (4)
N1—C1 1.427 (4) C8—H8A 0.9700
N1—H1N 0.834 (18) C8—H8B 0.9700
C1—C6 1.387 (4) C9—C10 1.493 (4)
C1—C2 1.397 (4) C9—H9A 0.9700
C2—C3 1.394 (4) C9—H9B 0.9700
C2—C11 1.503 (4) C11—H11A 0.9600
C3—C4 1.376 (5) C11—H11B 0.9600
C4—C5 1.374 (5) C11—H11C 0.9600
C10—O3—H3O 112 (3) O1—C7—C8 121.8 (3)
C7—N1—C1 125.5 (2) N1—C7—C8 114.8 (2)
C7—N1—H1N 119 (2) C9—C8—C7 112.7 (2)
C1—N1—H1N 115 (2) C9—C8—H8A 109.0
C6—C1—C2 121.4 (3) C7—C8—H8A 109.0
C6—C1—N1 119.7 (3) C9—C8—H8B 109.0
C2—C1—N1 118.8 (3) C7—C8—H8B 109.0
C3—C2—C1 116.3 (3) H8A—C8—H8B 107.8
C3—C2—C11 121.9 (3) C10—C9—C8 114.1 (3)
C1—C2—C11 121.7 (3) C10—C9—H9A 108.7
C4—C3—C2 122.9 (3) C8—C9—H9A 108.7
C4—C3—Cl1 117.6 (3) C10—C9—H9B 108.7
C2—C3—Cl1 119.5 (3) C8—C9—H9B 108.7
C5—C4—C3 119.3 (3) H9A—C9—H9B 107.6
C5—C4—H4 120.3 O2—C10—O3 122.5 (3)
C3—C4—H4 120.3 O2—C10—C9 122.8 (3)
C4—C5—C6 120.0 (3) O3—C10—C9 114.7 (3)
C4—C5—H5 120.0 C2—C11—H11A 109.5
C6—C5—H5 120.0 C2—C11—H11B 109.5
C5—C6—C1 120.0 (3) H11A—C11—H11B 109.5
C5—C6—H6 120.0 C2—C11—H11C 109.5
C1—C6—H6 120.0 H11A—C11—H11C 109.5
O1—C7—N1 123.3 (3) H11B—C11—H11C 109.5
C7—N1—C1—C6 45.2 (5) C3—C4—C5—C6 1.0 (6)
C7—N1—C1—C2 −135.5 (3) C4—C5—C6—C1 −0.9 (6)
C6—C1—C2—C3 2.8 (5) C2—C1—C6—C5 −1.1 (5)
N1—C1—C2—C3 −176.5 (3) N1—C1—C6—C5 178.2 (3)
C6—C1—C2—C11 −175.6 (3) C1—N1—C7—O1 1.3 (6)
N1—C1—C2—C11 5.1 (5) C1—N1—C7—C8 178.8 (3)
C1—C2—C3—C4 −2.7 (5) O1—C7—C8—C9 −17.7 (5)
C11—C2—C3—C4 175.7 (4) N1—C7—C8—C9 164.6 (3)
C1—C2—C3—Cl1 177.4 (2) C7—C8—C9—C10 171.9 (3)
C11—C2—C3—Cl1 −4.2 (5) C8—C9—C10—O2 −16.0 (5)
C2—C3—C4—C5 0.8 (6) C8—C9—C10—O3 165.6 (3)
Cl1—C3—C4—C5 −179.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O2i 0.83 (2) 1.84 (2) 2.666 (3) 176 (5)
N1—H1N···O1ii 0.83 (2) 2.10 (2) 2.905 (3) 163 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5924).

References

  1. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o835. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. [DOI] [PubMed]
  3. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  4. Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.
  5. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022763/bt5924sup1.cif

e-68-o1869-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022763/bt5924Isup2.hkl

e-68-o1869-Isup2.hkl (101.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022763/bt5924Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES