Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1874. doi: 10.1107/S1600536812022623

(3R,4S)-3,4,8-Trihy­droxy-1,2,3,4-tetra­hydro­naphthalen-1-one monohydrate from Embellisia eureka

Tarik Ouchbani a, Hafid Zouihri b, El Mokhtar Essassi a, Peter Proksch c, Seik Weng Ng d,e,*
PMCID: PMC3379437  PMID: 22719635

Abstract

In the title hydrate, C10H10O4·H2O, the six-membered aliphatic ring that is fused to the benzene ring has a sofa shape, with the hy­droxy group in the 3-position (that represents the sofa back) of the aliphatic ring occupying a quasi-axial position. The hy­droxy group of the aromatic ring is hydrogen-bond donor to the carbonyl O atom; other O—H⋯O hydrogen bonds link the organic mol­ecules and the water mol­ecules into a three-dimensional network.

Related literature  

For the isolation of the title compound from other fungi, see: Borgschulte et al. (1991); Iwasaki et al. (1972); Trisuwan et al. (2008). The absolute configuration was assumed from published assignments, see: Trisuwan et al. (2008).graphic file with name e-68-o1874-scheme1.jpg

Experimental  

Crystal data  

  • C10H10O4·H2O

  • M r = 212.20

  • Orthorhombic, Inline graphic

  • a = 4.6430 (4) Å

  • b = 14.3904 (11) Å

  • c = 14.4976 (10) Å

  • V = 968.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.24 mm

Data collection  

  • Bruker APEX DUO diffractometer

  • 6331 measured reflections

  • 1320 independent reflections

  • 916 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.096

  • S = 0.99

  • 1320 reflections

  • 156 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022623/xu5544sup1.cif

e-68-o1874-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022623/xu5544Isup2.hkl

e-68-o1874-Isup2.hkl (65.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022623/xu5544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.87 (3) 2.590 (3) 143 (3)
O1—H1⋯O1wi 0.84 (1) 2.27 (3) 2.829 (3) 124 (3)
O3—H2⋯O1ii 0.84 (1) 2.15 (3) 2.924 (3) 153 (5)
O4—H3⋯O1wiii 0.85 (1) 1.82 (1) 2.657 (3) 170 (4)
O1w—H4⋯O2 0.84 (1) 1.98 (1) 2.805 (3) 167 (4)
O1w—H5⋯O4iv 0.85 (1) 1.88 (1) 2.726 (3) 177 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank Université Mohammed V-Agdal, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study

supplementary crystallographic information

Comment

3,4-Dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone is a secondary metabolite produced by several endophytic fungi,e.g., Hypoxylon mammatum (Borgschulte et al., 1991), Nigrospora sp. (Trisuwan et al., 2008) and Pyrichularia orayzae (Iwasaki et al., 1972). The compound was isolated from Embellisia eureka in this study; the compound was found to crystallize as a monohydrate (Scheme I). In the hydrate, C10H10O4.H2O, the six-membered aliphatic ring that is fused to the benzene ring has a soft shape. The C-3 atom represents the sofa back. The hydroxy group of the aliphatic ring occupies a quasi-axial position (Fig. 1). The hydroxy group of the aromatic ring is hydrogen-bond donor to the carbonyl O atom; other O—H···O hydrogen bonds link the organic molecule and water molecule to form a 3D network (Table 1).

Experimental

Fungal extraction

The fungal strain, Embellisia eureka, was identified by PCR. About 250 ml of ethyl acetate was added into each culture material of the fungus in an Erlenmeyer flask. The ethyl acetate phase was then concentrated under reduced pressure. The residue was diluted in 90% aqueous methanol and further extracted with n-hexane to remove fatty acids and other non-polar constituents. The remaining 90% methanol phase was evaporated under reduced pressure to yield 3.0 g of crude product.

Isolation protocol of 3,4-dihydro-3,4,8-trihydroxy-1[2H]-naphthalenone

The 90% methanol extract was submitted to vacuum liquid chromatography on a column packed with silica as the stationary phase,. The resulting fraction was submitted two successive fractionations on a Sephadex column packed with Sephadex LH-20 as stationary phase. The mobile phase was the 100% methanol. This gave 113.4 mg of a material that was purified by using the semi-preparative HPLC to give 7.0 mg of the pure compound. Crystals were obtained by slow evaporation of a methanol: water (9:1) solution of the compound.

Refinement

The aromatic and methylene H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of 0.84±0.01 Å; their temperature factors were refined.

The (0 1 1) reflection was omitted owing to bad disagreement.

The absolute configuration was assumed from published assignments (Trisuwan et al., 2008); 892 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C10H10O4.H2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C10H10O4·H2O F(000) = 448
Mr = 212.20 Dx = 1.455 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1057 reflections
a = 4.6430 (4) Å θ = 2.8–21.8°
b = 14.3904 (11) Å µ = 0.12 mm1
c = 14.4976 (10) Å T = 293 K
V = 968.65 (13) Å3 Prism, brown
Z = 4 0.31 × 0.28 × 0.24 mm

Data collection

Bruker APEX DUO diffractometer 916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.063
Graphite monochromator θmax = 27.5°, θmin = 2.8°
ω scans h = −6→5
6331 measured reflections k = −18→17
1320 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3
1320 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.21 e Å3
5 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5051 (5) 0.75199 (14) 0.74392 (14) 0.0280 (6)
O2 0.1740 (5) 0.83227 (14) 0.62424 (12) 0.0281 (5)
O3 0.1933 (5) 1.08380 (14) 0.69719 (15) 0.0262 (5)
O4 −0.0651 (5) 1.10191 (16) 0.87414 (16) 0.0318 (5)
O1w 0.0565 (5) 0.82560 (15) 0.43458 (14) 0.0268 (5)
C1 0.1862 (7) 0.8812 (2) 0.77911 (18) 0.0198 (6)
C2 0.3877 (7) 0.81217 (18) 0.80514 (18) 0.0226 (7)
C3 0.4788 (7) 0.8053 (2) 0.89602 (18) 0.0270 (7)
H3A 0.6084 0.7592 0.9134 0.032*
C4 0.3753 (7) 0.8673 (2) 0.96024 (19) 0.0278 (8)
H4A 0.4351 0.8622 1.0213 0.033*
C5 0.1843 (7) 0.9371 (2) 0.9362 (2) 0.0247 (7)
H5A 0.1202 0.9787 0.9809 0.030*
C6 0.0881 (7) 0.94556 (19) 0.8461 (2) 0.0211 (6)
C7 −0.1173 (7) 1.02214 (19) 0.8181 (2) 0.0244 (7)
H7 −0.3147 1.0008 0.8293 0.029*
C8 −0.0888 (7) 1.0480 (2) 0.7169 (2) 0.0235 (7)
H8 −0.2352 1.0942 0.7004 0.028*
C9 −0.1250 (6) 0.96220 (19) 0.6583 (2) 0.0236 (7)
H9A −0.3192 0.9385 0.6658 0.028*
H9B −0.0993 0.9786 0.5940 0.028*
C10 0.0858 (6) 0.88749 (19) 0.68341 (18) 0.0193 (6)
H1 0.439 (8) 0.761 (2) 0.6908 (13) 0.049 (12)*
H2 0.228 (12) 1.1339 (18) 0.725 (3) 0.103 (19)*
H3 −0.228 (4) 1.118 (3) 0.895 (2) 0.061 (13)*
H4 0.071 (10) 0.821 (2) 0.4923 (8) 0.060 (13)*
H5 0.212 (4) 0.848 (2) 0.414 (2) 0.039 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0361 (14) 0.0245 (12) 0.0236 (11) 0.0091 (10) −0.0056 (11) −0.0015 (10)
O2 0.0319 (12) 0.0308 (11) 0.0215 (10) 0.0076 (11) −0.0046 (10) −0.0056 (9)
O3 0.0207 (11) 0.0228 (12) 0.0351 (12) −0.0052 (10) 0.0051 (10) −0.0006 (10)
O4 0.0180 (11) 0.0354 (13) 0.0420 (13) 0.0034 (11) 0.0007 (11) −0.0182 (11)
O1w 0.0195 (12) 0.0378 (13) 0.0231 (11) −0.0054 (11) −0.0032 (10) 0.0044 (10)
C1 0.0176 (15) 0.0199 (14) 0.0220 (14) −0.0065 (12) 0.0019 (12) 0.0013 (12)
C2 0.0261 (17) 0.0187 (15) 0.0229 (14) −0.0045 (13) −0.0005 (13) −0.0019 (12)
C3 0.034 (2) 0.0230 (16) 0.0243 (15) −0.0021 (14) −0.0067 (14) 0.0071 (14)
C4 0.034 (2) 0.0321 (17) 0.0175 (14) −0.0094 (15) −0.0003 (14) 0.0024 (13)
C5 0.0224 (16) 0.0282 (17) 0.0235 (15) −0.0068 (14) 0.0066 (14) −0.0030 (13)
C6 0.0153 (14) 0.0246 (15) 0.0234 (15) −0.0070 (13) 0.0052 (13) −0.0015 (12)
C7 0.0173 (16) 0.0263 (16) 0.0298 (16) −0.0011 (13) 0.0007 (14) −0.0069 (14)
C8 0.0157 (14) 0.0209 (15) 0.0340 (16) 0.0029 (13) 0.0003 (13) 0.0015 (13)
C9 0.0158 (16) 0.0299 (16) 0.0252 (16) 0.0005 (13) −0.0031 (13) −0.0006 (13)
C10 0.0155 (14) 0.0215 (14) 0.0211 (13) −0.0048 (13) −0.0004 (13) 0.0016 (12)

Geometric parameters (Å, º)

O1—C2 1.355 (3) C3—H3A 0.9300
O1—H1 0.840 (10) C4—C5 1.384 (4)
O2—C10 1.239 (3) C4—H4A 0.9300
O3—C8 1.436 (4) C5—C6 1.386 (4)
O3—H2 0.841 (10) C5—H5A 0.9300
O4—C7 1.427 (3) C6—C7 1.513 (4)
O4—H3 0.846 (10) C7—C8 1.520 (4)
O1w—H4 0.842 (10) C7—H7 0.9800
O1w—H5 0.846 (10) C8—C9 1.508 (4)
C1—C6 1.417 (4) C8—H8 0.9800
C1—C2 1.416 (4) C9—C10 1.498 (4)
C1—C10 1.466 (4) C9—H9A 0.9700
C2—C3 1.387 (4) C9—H9B 0.9700
C3—C4 1.377 (4)
C2—O1—H1 111 (3) O4—C7—C6 109.1 (2)
C8—O3—H2 113 (4) O4—C7—C8 109.7 (2)
C7—O4—H3 106 (3) C6—C7—C8 112.5 (3)
H4—O1w—H5 109 (4) O4—C7—H7 108.5
C6—C1—C2 119.2 (2) C6—C7—H7 108.5
C6—C1—C10 120.4 (3) C8—C7—H7 108.5
C2—C1—C10 120.3 (2) O3—C8—C9 106.4 (2)
O1—C2—C3 117.0 (3) O3—C8—C7 111.0 (2)
O1—C2—C1 122.7 (2) C9—C8—C7 109.5 (2)
C3—C2—C1 120.3 (3) O3—C8—H8 109.9
C4—C3—C2 119.3 (3) C9—C8—H8 109.9
C4—C3—H3A 120.3 C7—C8—H8 109.9
C2—C3—H3A 120.3 C10—C9—C8 112.2 (2)
C3—C4—C5 121.6 (3) C10—C9—H9A 109.2
C3—C4—H4A 119.2 C8—C9—H9A 109.2
C5—C4—H4A 119.2 C10—C9—H9B 109.2
C4—C5—C6 120.5 (3) C8—C9—H9B 109.2
C4—C5—H5A 119.8 H9A—C9—H9B 107.9
C6—C5—H5A 119.8 O2—C10—C1 120.7 (3)
C5—C6—C1 119.0 (3) O2—C10—C9 120.5 (2)
C5—C6—C7 121.3 (3) C1—C10—C9 118.8 (3)
C1—C6—C7 119.6 (3)
C6—C1—C2—O1 −175.8 (3) C1—C6—C7—O4 −148.4 (3)
C10—C1—C2—O1 2.8 (4) C5—C6—C7—C8 153.2 (3)
C6—C1—C2—C3 2.6 (4) C1—C6—C7—C8 −26.4 (4)
C10—C1—C2—C3 −178.9 (3) O4—C7—C8—O3 59.1 (3)
O1—C2—C3—C4 177.3 (3) C6—C7—C8—O3 −62.5 (3)
C1—C2—C3—C4 −1.2 (4) O4—C7—C8—C9 176.3 (2)
C2—C3—C4—C5 −0.6 (5) C6—C7—C8—C9 54.7 (3)
C3—C4—C5—C6 1.0 (5) O3—C8—C9—C10 63.4 (3)
C4—C5—C6—C1 0.5 (4) C7—C8—C9—C10 −56.7 (3)
C4—C5—C6—C7 −179.1 (3) C6—C1—C10—O2 178.9 (3)
C2—C1—C6—C5 −2.2 (4) C2—C1—C10—O2 0.4 (4)
C10—C1—C6—C5 179.2 (3) C6—C1—C10—C9 −0.8 (4)
C2—C1—C6—C7 177.4 (3) C2—C1—C10—C9 −179.3 (3)
C10—C1—C6—C7 −1.1 (4) C8—C9—C10—O2 −149.4 (3)
C5—C6—C7—O4 31.2 (4) C8—C9—C10—C1 30.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.84 (1) 1.87 (3) 2.590 (3) 143 (3)
O1—H1···O1wi 0.84 (1) 2.27 (3) 2.829 (3) 124 (3)
O3—H2···O1ii 0.84 (1) 2.15 (3) 2.924 (3) 153 (5)
O4—H3···O1wiii 0.85 (1) 1.82 (1) 2.657 (3) 170 (4)
O1w—H4···O2 0.84 (1) 1.98 (1) 2.805 (3) 167 (4)
O1w—H5···O4iv 0.85 (1) 1.88 (1) 2.726 (3) 177 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, y+1/2, −z+3/2; (iii) −x−1/2, −y+2, z+1/2; (iv) −x+1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5544).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Borgschulte, K., Rebuffat, S., Trowitzsch-Kienast, W., Schomburg, D., Pinon, J. & Bodo, B. (1991). Tetrahedron, 47, 8351–8360.
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Iwasaki, S., Muro, H., Nozoe, S. & Okuda, S. (1972). Tetrahedron Lett. 1, 13–16.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Trisuwan, K., Rukachaisirikul, V., Sukpondma, V., Preedanon, S., Phongpaichit, S., Rungjindamai, N. & Sakayaroj, J. (2008). J. Nat. Prod. 71, 1323–1326. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022623/xu5544sup1.cif

e-68-o1874-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022623/xu5544Isup2.hkl

e-68-o1874-Isup2.hkl (65.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022623/xu5544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES