Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1875. doi: 10.1107/S1600536812019575

(E)-3-(4-Methyl­phen­yl)-1-(1,3-thia­zol-2-yl)prop-2-en-1-one

Annamalai Palaniappan a,*, Arumugam Arulmozhivarman a, Rajamanickam Ramachandran b, Subramanian Srinivasan a, Sivakolunthu Senthan a
PMCID: PMC3379438  PMID: 22719636

Abstract

In the title chalcone, C13H11NOS, derived from the condensation of p-tolualdehyde and 1-(1,3-thia­zol-2-yl)ethanone, the olefine group has a trans configuration. No classical hydrogen bonding is present in the crystal structure.

Related literature  

For background to thia­zoles, see: Fontecave et al. (2003); Kleemann et al. (2001) and for their biological activity, see: Bharti et al. (2010); Bell et al. (1995); Cortes et al. (2007).graphic file with name e-68-o1875-scheme1.jpg

Experimental  

Crystal data  

  • C13H11NOS

  • M r = 229.29

  • Monoclinic, Inline graphic

  • a = 13.9486 (9) Å

  • b = 11.1773 (8) Å

  • c = 7.4579 (5) Å

  • β = 102.061 (4)°

  • V = 1137.08 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.949, T max = 0.949

  • 10320 measured reflections

  • 2808 independent reflections

  • 2070 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.118

  • S = 1.05

  • 2808 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019575/ez2285sup1.cif

e-68-o1875-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019575/ez2285Isup2.hkl

e-68-o1875-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019575/ez2285Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules which possess both sulphur and nitrogen atoms exhibit universal and crucial roles in living organisms (Fontecave et al., 2003), with thiazoles and their derivatives being an important class of heterocyclic compounds (Kleemann et al., 2001). Analogues of these are present in several drugs with a wide range of biological properties, such as antibacterial (Bharti et al., 2010), antiviral (Bell et al., 1995) and anticancer (Cortes et al., 2007). Our research has been focused towards finding new therapeutic agents, using thiazole compounds. Similarly, several α,β-unsaturated ketones have been found to have good biological activity. Therefore, in this paper we report both the thiazole and α,β-unsaturated ketone moieties in one molecule. The title compound (Fig. 1) exists in an E configuration with respect to the C7-C8 double bond. Both phenyl and thiazole rings adopt planar orientations and there is no classical hydrogen bonding found.

Experimental

To an aqueous ethanolic solution of p-tolualdehyde (0.01 mol) and 2-acetylthiazole (0.01 mol), a sodium hydroxide solution was added slowly and stirred until a precipitate formed. The obtained solid was filtered and washed well with water. Single crystals were grown by the slow evaporation technique using ethanol as solvent.

Refinement

H-atoms were positioned and refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å and amino N—H = 0.83 and 0.94 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The ORTEP representation of title compound showing the atom numbering scheme and ellipsoids at the 50% probability level.

Crystal data

C13H11NOS Z = 4
Mr = 229.29 F(000) = 480
Monoclinic, P21/c Dx = 1.339 Mg m3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.9486 (9) Å µ = 0.26 mm1
b = 11.1773 (8) Å T = 293 K
c = 7.4579 (5) Å Prism, colorless
β = 102.061 (4)° 0.20 × 0.20 × 0.20 mm
V = 1137.08 (13) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2808 independent reflections
Radiation source: fine-focus sealed tube 2070 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scan θmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −18→17
Tmin = 0.949, Tmax = 0.949 k = −11→14
10320 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1832P] where P = (Fo2 + 2Fc2)/3
2808 reflections (Δ/σ)max = 0.001
153 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.98502 (3) 0.17057 (5) 1.16674 (6) 0.05963 (18)
O1 0.82353 (10) −0.00430 (12) 1.0300 (2) 0.0721 (4)
N1 0.84607 (10) 0.31056 (13) 1.0198 (2) 0.0540 (4)
C1 0.53219 (10) 0.08303 (13) 0.72422 (19) 0.0380 (3)
C7 0.62986 (11) 0.05556 (15) 0.8309 (2) 0.0425 (3)
C4 0.34124 (11) 0.13769 (15) 0.5336 (2) 0.0451 (4)
C10 0.86817 (11) 0.19796 (15) 1.0453 (2) 0.0440 (4)
C2 0.51393 (11) 0.18190 (13) 0.6090 (2) 0.0420 (3)
H2 0.5657 0.2309 0.5948 0.050*
C8 0.70403 (11) 0.13124 (16) 0.8719 (2) 0.0471 (4)
C3 0.42049 (11) 0.20835 (15) 0.5155 (2) 0.0458 (4)
H3 0.4102 0.2748 0.4388 0.055*
C6 0.45308 (11) 0.01025 (14) 0.7382 (2) 0.0451 (4)
H6 0.4635 −0.0578 0.8113 0.054*
C9 0.79948 (11) 0.09785 (15) 0.9842 (2) 0.0476 (4)
C5 0.35920 (12) 0.03767 (15) 0.6448 (2) 0.0497 (4)
H5 0.3074 −0.0119 0.6570 0.060*
C13 0.23967 (13) 0.16866 (19) 0.4303 (3) 0.0681 (5)
H4C 0.2421 0.2405 0.3608 0.102*
H4A 0.1977 0.1809 0.5156 0.102*
H4B 0.2145 0.1043 0.3487 0.102*
C12 0.92396 (14) 0.37879 (19) 1.1005 (3) 0.0646 (5)
H12 0.9216 0.4619 1.0966 0.078*
C11 1.00462 (14) 0.31959 (19) 1.1861 (3) 0.0622 (5)
H11 1.0625 0.3554 1.2469 0.075*
H7 0.6378 (13) −0.0218 (18) 0.877 (2) 0.059 (5)*
H8 0.6995 (14) 0.2095 (18) 0.835 (3) 0.066 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0395 (2) 0.0771 (4) 0.0562 (3) 0.0054 (2) −0.00395 (18) 0.0080 (2)
O1 0.0545 (7) 0.0519 (8) 0.1003 (11) 0.0082 (6) −0.0058 (7) 0.0108 (7)
N1 0.0422 (7) 0.0531 (9) 0.0628 (9) 0.0023 (6) 0.0019 (6) −0.0033 (7)
C1 0.0372 (7) 0.0350 (7) 0.0417 (7) 0.0004 (6) 0.0080 (6) −0.0042 (6)
C7 0.0412 (8) 0.0394 (8) 0.0465 (8) 0.0040 (6) 0.0079 (6) −0.0002 (7)
C4 0.0383 (7) 0.0472 (9) 0.0476 (8) 0.0011 (6) 0.0040 (6) −0.0089 (7)
C10 0.0333 (7) 0.0566 (9) 0.0405 (8) 0.0055 (7) 0.0041 (6) 0.0014 (7)
C2 0.0389 (7) 0.0395 (8) 0.0477 (8) −0.0048 (6) 0.0096 (6) 0.0008 (6)
C8 0.0390 (8) 0.0444 (9) 0.0544 (9) 0.0022 (7) 0.0017 (7) 0.0025 (7)
C3 0.0469 (8) 0.0420 (8) 0.0465 (8) 0.0026 (7) 0.0046 (6) 0.0035 (7)
C6 0.0478 (8) 0.0341 (8) 0.0526 (9) −0.0041 (6) 0.0083 (7) 0.0028 (7)
C9 0.0378 (7) 0.0517 (10) 0.0519 (9) 0.0049 (7) 0.0059 (6) 0.0019 (7)
C5 0.0410 (8) 0.0459 (9) 0.0619 (10) −0.0110 (7) 0.0099 (7) −0.0046 (7)
C13 0.0425 (9) 0.0759 (13) 0.0777 (13) 0.0042 (9) −0.0063 (9) −0.0058 (10)
C12 0.0560 (10) 0.0618 (12) 0.0722 (12) −0.0096 (9) 0.0047 (9) −0.0107 (10)
C11 0.0466 (9) 0.0835 (14) 0.0530 (10) −0.0139 (9) 0.0025 (8) −0.0082 (9)

Geometric parameters (Å, º)

S1—C11 1.689 (2) C2—C3 1.376 (2)
S1—C10 1.7185 (15) C2—H2 0.9300
O1—C9 1.219 (2) C8—C9 1.465 (2)
N1—C10 1.300 (2) C8—H8 0.92 (2)
N1—C12 1.360 (2) C3—H3 0.9300
C1—C2 1.390 (2) C6—C5 1.383 (2)
C1—C6 1.392 (2) C6—H6 0.9300
C1—C7 1.460 (2) C5—H5 0.9300
C7—C8 1.322 (2) C13—H4C 0.9600
C7—H7 0.929 (19) C13—H4A 0.9600
C4—C5 1.383 (2) C13—H4B 0.9600
C4—C3 1.388 (2) C12—C11 1.346 (3)
C4—C13 1.505 (2) C12—H12 0.9300
C10—C9 1.482 (2) C11—H11 0.9300
C11—S1—C10 89.32 (9) C4—C3—H3 119.4
C10—N1—C12 109.56 (16) C5—C6—C1 120.99 (14)
C2—C1—C6 117.70 (13) C5—C6—H6 119.5
C2—C1—C7 122.26 (13) C1—C6—H6 119.5
C6—C1—C7 120.03 (14) O1—C9—C8 124.27 (16)
C8—C7—C1 126.00 (15) O1—C9—C10 119.91 (15)
C8—C7—H7 118.9 (11) C8—C9—C10 115.81 (14)
C1—C7—H7 115.1 (11) C6—C5—C4 120.98 (14)
C5—C4—C3 118.03 (14) C6—C5—H5 119.5
C5—C4—C13 121.73 (16) C4—C5—H5 119.5
C3—C4—C13 120.21 (16) C4—C13—H4C 109.5
N1—C10—C9 124.58 (14) C4—C13—H4A 109.5
N1—C10—S1 114.79 (12) H4C—C13—H4A 109.5
C9—C10—S1 120.58 (12) C4—C13—H4B 109.5
C3—C2—C1 121.05 (14) H4C—C13—H4B 109.5
C3—C2—H2 119.5 H4A—C13—H4B 109.5
C1—C2—H2 119.5 C11—C12—N1 116.45 (19)
C7—C8—C9 122.88 (16) C11—C12—H12 121.8
C7—C8—H8 122.7 (12) N1—C12—H12 121.8
C9—C8—H8 114.4 (13) C12—C11—S1 109.87 (15)
C2—C3—C4 121.20 (15) C12—C11—H11 125.1
C2—C3—H3 119.4 S1—C11—H11 125.1
C2—C1—C7—C8 19.2 (2) C7—C1—C6—C5 177.01 (15)
C6—C1—C7—C8 −159.68 (16) C7—C8—C9—O1 9.7 (3)
C12—N1—C10—C9 176.99 (16) C7—C8—C9—C10 −169.19 (15)
C12—N1—C10—S1 −0.58 (19) N1—C10—C9—O1 −172.68 (16)
C11—S1—C10—N1 0.65 (14) S1—C10—C9—O1 4.8 (2)
C11—S1—C10—C9 −177.02 (14) N1—C10—C9—C8 6.3 (2)
C6—C1—C2—C3 1.5 (2) S1—C10—C9—C8 −176.29 (12)
C7—C1—C2—C3 −177.40 (14) C1—C6—C5—C4 0.6 (2)
C1—C7—C8—C9 178.32 (14) C3—C4—C5—C6 1.3 (2)
C1—C2—C3—C4 0.3 (2) C13—C4—C5—C6 179.72 (16)
C5—C4—C3—C2 −1.7 (2) C10—N1—C12—C11 0.2 (2)
C13—C4—C3—C2 179.84 (16) N1—C12—C11—S1 0.3 (2)
C2—C1—C6—C5 −2.0 (2) C10—S1—C11—C12 −0.52 (15)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2285).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, P., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929–4936. [DOI] [PubMed]
  3. Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660. [DOI] [PubMed]
  4. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2004). APEX2, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cortes, J., Rousselot, P., Kim, D. W., Ritchie, E., Hamerschlak, N., Coutre, S., Hochhaus, A., Guilhot, F., Saglio, G., Apperley, J., Ottmann, O., Shah, N., Erben, P., Branford, S., Agarwal, P., Gollerkeri, A. & Baccarani, M. (2007). Blood, 109, 3207–3213. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Fontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. (2003). Chem. Rev. 103, 2149–2166. [DOI] [PubMed]
  10. Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2001). Pharmaceutical Substances, 4th ed. Stuttgart: Thieme.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812019575/ez2285sup1.cif

e-68-o1875-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812019575/ez2285Isup2.hkl

e-68-o1875-Isup2.hkl (137.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812019575/ez2285Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES