Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1876. doi: 10.1107/S1600536812022684

2-(4-Bromo­phen­yl)-2-oxoethyl anthracene-9-carboxyl­ate

Hoong-Kun Fun a,*,, Safra Izuani Jama Asik a, B Garudachari b, Arun M Isloor b, M N Satyanarayan c
PMCID: PMC3379439  PMID: 22719637

Abstract

In the title compound, C23H15BrO3, the anthracene ring system is essentially planar [maximum deviation = 0.29 (2) Å] and makes a dihedral angle of 5.74 (8)° with the mean plane of the bromo-substituted benzene ring. An intra­molecular C—H⋯O hydrogen bond generates an S(9) ring motif. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming a two-dimensional network parallel to the ac plane. π–π stacking inter­actions are observed between benzene rings [centroid–centroid distances = 3.5949 (14) and 3.5960 (13) Å].

Related literature  

For background to the applications of anthracene, see: Bae et al. (2010); Reddy et al. (2011); Rather & Reid (1919). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). graphic file with name e-68-o1876-scheme1.jpg

Experimental  

Crystal data  

  • C23H15BrO3

  • M r = 419.26

  • Monoclinic, Inline graphic

  • a = 10.1906 (8) Å

  • b = 15.0591 (12) Å

  • c = 13.7938 (8) Å

  • β = 122.376 (4)°

  • V = 1787.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100 K

  • 0.29 × 0.19 × 0.18 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.550, T max = 0.677

  • 23513 measured reflections

  • 6409 independent reflections

  • 4600 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.141

  • S = 1.01

  • 6409 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022684/rz2758sup1.cif

e-68-o1876-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022684/rz2758Isup2.hkl

e-68-o1876-Isup2.hkl (313.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022684/rz2758Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3 0.93 2.50 3.401 (3) 164
C20—H20A⋯O1i 0.93 2.47 3.394 (3) 176
C22—H22A⋯O3ii 0.93 2.31 3.199 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award. SMN thanks Department of Information Technology, New Delhi, India, for financial support.

supplementary crystallographic information

Comment

Anthracene is a solid polycyclic aromatic hydrocarbon consisting of three fused benzene rings. It is used in the production of the dyes and organic semiconductor (Bae et al., 2010) as high energy photons, electrons and alpha particle detectors and also used in blue light emitter in OLEDs (Reddy et al., 2011) and identification of organic acids (Rather & Reid, 1919). Keeping this in view, the title compound (I) was synthesized to study its crystal structure.

In the title compound of (I), (Fig. 1), the anthracene (C1–C14) is essentially planar with maximum deviation of 0.029 (2) Å at atom C7 and makes a dihedral angle of 5.74 (8)° with the mean plane of bromo-substituted benzene (C18–C23) ring. The intramolecular C12—H12A···O3 interaction generates a S(9) ring motif (Bernstein et al., 1995).

In the crystal structure of (Fig, 2), the molecules are linked by C20—H20A···O1 and C22—H22A···O3 interactions to form a two-dimensional network parallel to ac plane. π–π stacking interactions are observed between benzene rings with Cg2···Cg3 and Cg2···Cg4 distances of 3.5949 (14) and 3.5960 (13) Å, respectively. [Cg2 , Cg3 and Cg4 are the centroids of (C1/C6–C8/C13–C14), (C8–C13) and (C18–C23) rings, respectively.]

Experimental

A mixture of anthracene-9-carboxylic acid (1.0 g, 0.0044 mol), potassium carbonate (0.589 g, 0.0043 mol) and 2-bromo-1-(4-bromophenyl)ethanone (0.746 g, 0.0053 mol) in dimethylformamide (10 ml) was stirred at room temperature for 1 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl anthracene-9-carboxylate separated. They were collected by filtration and recrystallized from ethanol. Yield: 1.60 g, 85.1 %, M.p. 421–423 K.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 and 0.97 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for the H atoms. Four outliers (-4 0 4), (0 2 1), (0 2 0) and (0 6 0) were omitted.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. An intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing viewed along the b-axis, showing the molecules linked into a two-dimensional network parallel to ac plane. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C23H15BrO3 F(000) = 848
Mr = 419.26 Dx = 1.558 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5144 reflections
a = 10.1906 (8) Å θ = 2.5–31.7°
b = 15.0591 (12) Å µ = 2.32 mm1
c = 13.7938 (8) Å T = 100 K
β = 122.376 (4)° Block, colourless
V = 1787.8 (2) Å3 0.29 × 0.19 × 0.18 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer 6409 independent reflections
Radiation source: fine-focus sealed tube 4600 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
φ and ω scans θmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.550, Tmax = 0.677 k = −22→22
23513 measured reflections l = −20→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0886P)2 + 0.0927P] where P = (Fo2 + 2Fc2)/3
6409 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 1.67 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.87070 (3) 0.870236 (16) 0.94495 (2) 0.03087 (9)
O1 0.1433 (2) 0.62950 (10) 0.30661 (16) 0.0325 (4)
O2 0.29082 (18) 0.51653 (10) 0.41883 (13) 0.0240 (3)
O3 0.50031 (19) 0.63375 (10) 0.44349 (14) 0.0261 (3)
C1 −0.0111 (2) 0.44108 (13) 0.19350 (18) 0.0216 (4)
C2 −0.0870 (3) 0.45257 (15) 0.2544 (2) 0.0260 (4)
H2A −0.0463 0.4923 0.3154 0.031*
C3 −0.2193 (3) 0.40581 (17) 0.2243 (2) 0.0323 (5)
H3A −0.2672 0.4139 0.2651 0.039*
C4 −0.2831 (3) 0.34522 (17) 0.1312 (3) 0.0371 (6)
H4A −0.3731 0.3140 0.1109 0.045*
C5 −0.2135 (3) 0.33265 (15) 0.0721 (2) 0.0335 (5)
H5A −0.2562 0.2920 0.0120 0.040*
C6 −0.0757 (3) 0.38009 (14) 0.0990 (2) 0.0257 (4)
C7 −0.0046 (3) 0.36890 (14) 0.0382 (2) 0.0271 (4)
H7A −0.0492 0.3308 −0.0246 0.033*
C8 0.1329 (2) 0.41350 (15) 0.06852 (18) 0.0253 (4)
C9 0.2078 (3) 0.40118 (17) 0.0066 (2) 0.0308 (5)
H9A 0.1644 0.3627 −0.0558 0.037*
C10 0.3417 (3) 0.44494 (18) 0.0377 (2) 0.0338 (5)
H10A 0.3901 0.4352 −0.0025 0.041*
C11 0.4079 (3) 0.50561 (17) 0.1314 (2) 0.0307 (5)
H11A 0.4992 0.5353 0.1519 0.037*
C12 0.3393 (2) 0.52057 (15) 0.19129 (19) 0.0248 (4)
H12A 0.3829 0.5612 0.2514 0.030*
C13 0.1998 (2) 0.47415 (14) 0.16253 (17) 0.0218 (4)
C14 0.1252 (2) 0.48732 (13) 0.22245 (17) 0.0200 (4)
C15 0.1862 (2) 0.55352 (14) 0.31773 (18) 0.0212 (4)
C16 0.3542 (3) 0.57382 (15) 0.51649 (18) 0.0240 (4)
H16A 0.3999 0.5385 0.5860 0.029*
H16B 0.2719 0.6096 0.5119 0.029*
C17 0.4772 (2) 0.63405 (12) 0.52133 (18) 0.0195 (4)
C18 0.5685 (2) 0.69144 (13) 0.62398 (17) 0.0183 (3)
C19 0.7085 (2) 0.72715 (14) 0.64551 (17) 0.0225 (4)
H19A 0.7410 0.7148 0.5955 0.027*
C20 0.7993 (3) 0.78068 (14) 0.74042 (18) 0.0244 (4)
H20A 0.8934 0.8035 0.7557 0.029*
C21 0.7457 (2) 0.79908 (13) 0.81176 (18) 0.0215 (4)
C22 0.6081 (2) 0.76560 (14) 0.79325 (18) 0.0227 (4)
H22A 0.5750 0.7796 0.8425 0.027*
C23 0.5203 (2) 0.71067 (14) 0.69956 (18) 0.0212 (4)
H23A 0.4285 0.6863 0.6867 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03828 (15) 0.03103 (13) 0.02549 (13) −0.00894 (9) 0.01853 (11) −0.00714 (8)
O1 0.0254 (8) 0.0250 (8) 0.0331 (9) 0.0049 (6) 0.0064 (7) −0.0067 (6)
O2 0.0261 (8) 0.0231 (7) 0.0187 (7) −0.0025 (6) 0.0094 (6) −0.0007 (5)
O3 0.0233 (7) 0.0367 (9) 0.0196 (7) −0.0046 (6) 0.0124 (6) −0.0027 (6)
C1 0.0187 (9) 0.0187 (8) 0.0222 (10) 0.0003 (7) 0.0075 (8) 0.0013 (7)
C2 0.0236 (10) 0.0257 (10) 0.0273 (11) −0.0005 (8) 0.0127 (9) 0.0023 (8)
C3 0.0282 (11) 0.0326 (12) 0.0380 (13) −0.0033 (9) 0.0191 (11) 0.0031 (10)
C4 0.0275 (12) 0.0303 (11) 0.0485 (16) −0.0099 (10) 0.0169 (12) 0.0008 (11)
C5 0.0266 (11) 0.0206 (10) 0.0389 (13) −0.0058 (9) 0.0079 (10) −0.0069 (9)
C6 0.0231 (10) 0.0191 (9) 0.0257 (10) 0.0033 (7) 0.0070 (9) −0.0008 (7)
C7 0.0271 (11) 0.0216 (10) 0.0224 (10) 0.0016 (8) 0.0065 (9) −0.0025 (8)
C8 0.0263 (11) 0.0223 (10) 0.0219 (10) 0.0089 (8) 0.0092 (9) 0.0002 (7)
C9 0.0365 (12) 0.0318 (11) 0.0199 (10) 0.0119 (10) 0.0123 (10) 0.0031 (9)
C10 0.0403 (13) 0.0424 (13) 0.0274 (11) 0.0161 (11) 0.0240 (11) 0.0090 (10)
C11 0.0256 (11) 0.0398 (12) 0.0286 (11) 0.0049 (9) 0.0157 (10) 0.0083 (10)
C12 0.0207 (9) 0.0302 (10) 0.0204 (10) 0.0029 (8) 0.0091 (8) 0.0006 (8)
C13 0.0185 (9) 0.0240 (9) 0.0195 (9) 0.0048 (7) 0.0079 (8) 0.0015 (7)
C14 0.0181 (9) 0.0200 (8) 0.0182 (9) 0.0022 (7) 0.0073 (7) 0.0000 (7)
C15 0.0191 (9) 0.0241 (9) 0.0220 (9) −0.0012 (7) 0.0121 (8) −0.0009 (7)
C16 0.0270 (10) 0.0276 (10) 0.0186 (9) −0.0070 (8) 0.0131 (8) −0.0035 (8)
C17 0.0180 (9) 0.0203 (9) 0.0203 (9) 0.0014 (7) 0.0104 (8) 0.0014 (7)
C18 0.0172 (8) 0.0199 (8) 0.0190 (9) 0.0009 (7) 0.0104 (7) 0.0027 (7)
C19 0.0222 (9) 0.0300 (10) 0.0196 (9) −0.0043 (8) 0.0140 (8) −0.0002 (8)
C20 0.0244 (10) 0.0290 (10) 0.0243 (10) −0.0051 (8) 0.0160 (9) −0.0003 (8)
C21 0.0265 (10) 0.0197 (9) 0.0184 (9) −0.0007 (7) 0.0119 (8) 0.0003 (7)
C22 0.0253 (10) 0.0240 (9) 0.0226 (10) 0.0027 (8) 0.0154 (9) 0.0013 (8)
C23 0.0206 (9) 0.0252 (9) 0.0221 (9) 0.0012 (7) 0.0143 (8) 0.0031 (8)

Geometric parameters (Å, º)

Br1—C21 1.908 (2) C10—C11 1.424 (4)
O1—C15 1.205 (2) C10—H10A 0.9300
O2—C15 1.342 (3) C11—C12 1.356 (3)
O2—C16 1.430 (3) C11—H11A 0.9300
O3—C17 1.216 (2) C12—C13 1.436 (3)
C1—C14 1.406 (3) C12—H12A 0.9300
C1—C2 1.425 (3) C13—C14 1.405 (3)
C1—C6 1.434 (3) C14—C15 1.494 (3)
C2—C3 1.373 (3) C16—C17 1.520 (3)
C2—H2A 0.9300 C16—H16A 0.9700
C3—C4 1.418 (4) C16—H16B 0.9700
C3—H3A 0.9300 C17—C18 1.485 (3)
C4—C5 1.350 (4) C18—C19 1.400 (3)
C4—H4A 0.9300 C18—C23 1.400 (3)
C5—C6 1.436 (3) C19—C20 1.387 (3)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.382 (3) C20—C21 1.385 (3)
C7—C8 1.401 (3) C20—H20A 0.9300
C7—H7A 0.9300 C21—C22 1.380 (3)
C8—C13 1.426 (3) C22—C23 1.384 (3)
C8—C9 1.430 (3) C22—H22A 0.9300
C9—C10 1.361 (4) C23—H23A 0.9300
C9—H9A 0.9300
C15—O2—C16 115.81 (17) C14—C13—C8 118.66 (19)
C14—C1—C2 122.51 (19) C14—C13—C12 122.43 (19)
C14—C1—C6 118.6 (2) C8—C13—C12 118.9 (2)
C2—C1—C6 118.9 (2) C13—C14—C1 121.74 (19)
C3—C2—C1 121.0 (2) C13—C14—C15 120.68 (18)
C3—C2—H2A 119.5 C1—C14—C15 117.56 (18)
C1—C2—H2A 119.5 O1—C15—O2 124.0 (2)
C2—C3—C4 120.3 (2) O1—C15—C14 124.7 (2)
C2—C3—H3A 119.9 O2—C15—C14 111.23 (17)
C4—C3—H3A 119.9 O2—C16—C17 110.32 (16)
C5—C4—C3 120.2 (2) O2—C16—H16A 109.6
C5—C4—H4A 119.9 C17—C16—H16A 109.6
C3—C4—H4A 119.9 O2—C16—H16B 109.6
C4—C5—C6 122.1 (2) C17—C16—H16B 109.6
C4—C5—H5A 119.0 H16A—C16—H16B 108.1
C6—C5—H5A 119.0 O3—C17—C18 121.71 (18)
C7—C6—C1 119.7 (2) O3—C17—C16 120.27 (18)
C7—C6—C5 122.7 (2) C18—C17—C16 118.01 (17)
C1—C6—C5 117.6 (2) C19—C18—C23 119.11 (19)
C6—C7—C8 121.7 (2) C19—C18—C17 118.19 (17)
C6—C7—H7A 119.1 C23—C18—C17 122.70 (18)
C8—C7—H7A 119.1 C20—C19—C18 120.87 (19)
C7—C8—C13 119.6 (2) C20—C19—H19A 119.6
C7—C8—C9 121.9 (2) C18—C19—H19A 119.6
C13—C8—C9 118.6 (2) C21—C20—C19 117.97 (19)
C10—C9—C8 121.0 (2) C21—C20—H20A 121.0
C10—C9—H9A 119.5 C19—C20—H20A 121.0
C8—C9—H9A 119.5 C22—C21—C20 122.95 (19)
C9—C10—C11 120.3 (2) C22—C21—Br1 118.15 (15)
C9—C10—H10A 119.9 C20—C21—Br1 118.86 (16)
C11—C10—H10A 119.9 C21—C22—C23 118.40 (18)
C12—C11—C10 120.8 (2) C21—C22—H22A 120.8
C12—C11—H11A 119.6 C23—C22—H22A 120.8
C10—C11—H11A 119.6 C22—C23—C18 120.67 (19)
C11—C12—C13 120.5 (2) C22—C23—H23A 119.7
C11—C12—H12A 119.7 C18—C23—H23A 119.7
C13—C12—H12A 119.7
C14—C1—C2—C3 −179.5 (2) C12—C13—C14—C15 2.1 (3)
C6—C1—C2—C3 0.5 (3) C2—C1—C14—C13 179.01 (19)
C1—C2—C3—C4 −0.2 (4) C6—C1—C14—C13 −1.0 (3)
C2—C3—C4—C5 0.5 (4) C2—C1—C14—C15 −2.7 (3)
C3—C4—C5—C6 −0.9 (4) C6—C1—C14—C15 177.28 (18)
C14—C1—C6—C7 −0.8 (3) C16—O2—C15—O1 −1.3 (3)
C2—C1—C6—C7 179.3 (2) C16—O2—C15—C14 −178.65 (16)
C14—C1—C6—C5 179.10 (19) C13—C14—C15—O1 93.4 (3)
C2—C1—C6—C5 −0.9 (3) C1—C14—C15—O1 −84.9 (3)
C4—C5—C6—C7 −179.0 (2) C13—C14—C15—O2 −89.2 (2)
C4—C5—C6—C1 1.1 (4) C1—C14—C15—O2 92.5 (2)
C1—C6—C7—C8 2.2 (3) C15—O2—C16—C17 −78.0 (2)
C5—C6—C7—C8 −177.7 (2) O2—C16—C17—O3 5.7 (3)
C6—C7—C8—C13 −1.9 (3) O2—C16—C17—C18 −173.42 (17)
C6—C7—C8—C9 179.2 (2) O3—C17—C18—C19 −17.1 (3)
C7—C8—C9—C10 −179.8 (2) C16—C17—C18—C19 162.00 (19)
C13—C8—C9—C10 1.2 (3) O3—C17—C18—C23 163.1 (2)
C8—C9—C10—C11 −1.4 (4) C16—C17—C18—C23 −17.7 (3)
C9—C10—C11—C12 0.2 (4) C23—C18—C19—C20 0.2 (3)
C10—C11—C12—C13 1.2 (3) C17—C18—C19—C20 −179.53 (19)
C7—C8—C13—C14 0.1 (3) C18—C19—C20—C21 −1.3 (3)
C9—C8—C13—C14 179.09 (19) C19—C20—C21—C22 0.9 (3)
C7—C8—C13—C12 −178.89 (19) C19—C20—C21—Br1 178.53 (16)
C9—C8—C13—C12 0.1 (3) C20—C21—C22—C23 0.5 (3)
C11—C12—C13—C14 179.8 (2) Br1—C21—C22—C23 −177.15 (15)
C11—C12—C13—C8 −1.3 (3) C21—C22—C23—C18 −1.6 (3)
C8—C13—C14—C1 1.3 (3) C19—C18—C23—C22 1.2 (3)
C12—C13—C14—C1 −179.75 (19) C17—C18—C23—C22 −179.03 (18)
C8—C13—C14—C15 −176.91 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O3 0.93 2.50 3.401 (3) 164
C20—H20A···O1i 0.93 2.47 3.394 (3) 176
C22—H22A···O3ii 0.93 2.31 3.199 (3) 159

Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2758).

References

  1. Bae, S. Y., Jung, K. H., Hoang, M. H., Kim, K. H., Lee, T. W., Cho, M. J., Jin, J., Lee, D. H., Chung, D. S., Park, C. E. & Choi, D. H. (2010). Synth. Met. 160, 1022–1029.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.
  6. Reddy, M. A., Mallesham, G., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Giribabu, L., Grover, R., Kumar, A., Kamalasanan, M. N. & Srivastava, R. (2011). Synth. Met. 161, 869–880.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022684/rz2758sup1.cif

e-68-o1876-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022684/rz2758Isup2.hkl

e-68-o1876-Isup2.hkl (313.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022684/rz2758Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES