Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1884. doi: 10.1107/S1600536812023173

2,4-Dibromo-2,3-dihydro-1H-inden-1-yl acetate

Ísmail Çelik a, Mehmet Akkurt b,*, Makbule Yilmaz c, Ahmet Tutar c, Ramazan Erenler d, Canan Kazak e
PMCID: PMC3379444  PMID: 22719642

Abstract

In the title compound, C11H10Br2O2, the cyclo­pentene ring fused to the benzene ring adopts an envelope conformation, with the C atom attached to the Br atom as the flap. The crystal structure does not exhibit any classical hydrogen bonds. The mol­ecular packing is stabilized by van der Waals forces and π–π stacking inter­actions with a centroid–centroid distance of 3.811 (4) Å.

Related literature  

For bromination of hydro­carbons, see: Catto et al. (2010); Erenler & Çakmak (2004); Erenler et al. (2006); McClure et al. (2011); Mitrochkine et al. (1995); Snyder & Brill (2011); Wu (2006); Çakmak et al. (2006). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1884-scheme1.jpg

Experimental  

Crystal data  

  • C11H10Br2O2

  • M r = 333.99

  • Triclinic, Inline graphic

  • a = 8.1423 (7) Å

  • b = 8.6891 (9) Å

  • c = 9.0028 (8) Å

  • α = 76.163 (8)°

  • β = 68.105 (7)°

  • γ = 86.397 (8)°

  • V = 573.60 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.04 mm−1

  • T = 296 K

  • 0.43 × 0.35 × 0.28 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.152, T max = 0.243

  • 6542 measured reflections

  • 2635 independent reflections

  • 1958 reflections with I > 2σ(I)

  • R int = 0.110

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.178

  • S = 1.02

  • 2635 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.42 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023173/fj2559sup1.cif

e-68-o1884-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023173/fj2559Isup2.hkl

e-68-o1884-Isup2.hkl (129.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023173/fj2559Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Brominations of hydrocarbons are important processes in synthetic chemistry (Çakmak et al., 2006; Erenler et al., 2006; Erenler & Çakmak, 2004). Indanes are important class of molecules due to the pharmacological and medicinal properties (Mitrochkine et al., 1995; Catto et al., 2010; Wu, 2006; McClure et al., 2011) as well as natural product chemistry (Snyder & Brill, 2011).

The five-membered C1C6–C9 cyclopentene ring in the title compound, (Fig. 1), exhibits an envelope-shaped conformation, with the C8 atom attached to Br2 atom at the flap [the puckering parameters (Cremer & Pople, 1975) Q(2) = 0.279 (7) Å, φ(2) = 290.5 (13) °]. The Br1–C5–C6–C1, Br2–C8–C9–C1, C9–O1–C10–C11 and C9–O1–C10–O2 torsion angles are -178.0 (4), -152.1 (4), -170.2 (6) and 10.3 (9) °, respectively.

In the crystal, there is no classic hydrogen bonds. The crystal structure is stabilized by van der Waals forces and π-π stacking interactions [Cg2···Cg2(1 - x, 1 - y, 2 - z) = 3.811 (4) Å] between the centroids (Cg2) of the benzene rings of the adjacent molecules. Fig. 2 shows the molecular packing of the title compound along the b axis.

Experimental

To a cooled solution (273 K) of 2,4-dibromo-1-hyodroxyindane (0.2 g, 0.68 mmol) in pyridine (6.0 ml) was added acetic anhydride (1.0 ml) dropwise. After completion of the reaction for 4 h at room temperature, the solvent was removed under reduced pressure to form the solid product which was crystalized from dichloromethane/hexane to yield the 1-acetate-2,4-dibromo-indane (0.21 g, 95%). 1H-NMR (300 MHz, CDCl3) δ 7.40–7.60 (m, 3H), 6.0 (d, 1H), 4.90 (dt, 1H), 3.50 (m, 2H), 2.20 (s, 3H).

Refinement

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Eight poorly fitted reflections (0 1 0), (-2 0 2), (2 - 1 4), (-5 - 8 2), (3 - 1 3), (1 - 1 4), (0 2 1) and (-1 0 2) were omitted from the refinement. The highest residual peak and the deepest hole are located 0.93 and 0.89 Å, respectively, from atom Br2.

Figures

Fig. 1.

Fig. 1.

An ORTEP drawing of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the packing of the title compound, along the b axis. H atoms are omitted for the sake of clarity.

Crystal data

C11H10Br2O2 Z = 2
Mr = 333.99 F(000) = 324
Triclinic, P1 Dx = 1.934 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1423 (7) Å Cell parameters from 9714 reflections
b = 8.6891 (9) Å θ = 2.4–28.1°
c = 9.0028 (8) Å µ = 7.04 mm1
α = 76.163 (8)° T = 296 K
β = 68.105 (7)° Prism, colourless
γ = 86.397 (8)° 0.43 × 0.35 × 0.28 mm
V = 573.60 (10) Å3

Data collection

Stoe IPDS 2 diffractometer 2635 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1958 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.110
Detector resolution: 6.67 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −11→10
Tmin = 0.152, Tmax = 0.243 l = −11→11
6542 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3
2635 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 1.20 e Å3
0 restraints Δρmin = −1.42 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.22277 (8) 0.18390 (9) 1.10206 (9) 0.0641 (3)
Br2 0.91526 (9) 0.24936 (9) 0.49626 (8) 0.0579 (3)
O1 0.9902 (5) 0.1989 (5) 0.8133 (5) 0.0464 (11)
O2 1.2454 (6) 0.3332 (6) 0.6377 (6) 0.0625 (16)
C1 0.7425 (7) 0.3340 (6) 0.9593 (7) 0.0433 (17)
C2 0.7505 (8) 0.3703 (7) 1.0998 (8) 0.0495 (17)
C3 0.6006 (10) 0.3485 (8) 1.2402 (8) 0.0549 (19)
C4 0.4421 (9) 0.2927 (8) 1.2408 (8) 0.0527 (19)
C5 0.4366 (8) 0.2609 (7) 1.1011 (8) 0.0497 (17)
C6 0.5867 (7) 0.2826 (7) 0.9560 (7) 0.0438 (17)
C7 0.6106 (7) 0.2538 (7) 0.7923 (7) 0.0472 (17)
C8 0.7877 (7) 0.3406 (7) 0.6838 (7) 0.0446 (17)
C9 0.8911 (7) 0.3415 (6) 0.7950 (7) 0.0425 (14)
C10 1.1652 (8) 0.2097 (8) 0.7179 (8) 0.0488 (17)
C11 1.2441 (10) 0.0501 (9) 0.7271 (11) 0.065 (3)
H2 0.85540 0.40870 1.09820 0.0590*
H3 0.60410 0.37060 1.33510 0.0660*
H4 0.34100 0.27740 1.33620 0.0630*
H7A 0.51600 0.29880 0.75610 0.0570*
H7B 0.61690 0.14150 0.79440 0.0570*
H8 0.76310 0.45080 0.64130 0.0530*
H9 0.96600 0.43760 0.75890 0.0510*
H11A 1.18960 −0.01350 0.68340 0.0970*
H11B 1.22470 −0.00010 0.83970 0.0970*
H11C 1.36900 0.06100 0.66390 0.0970*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0461 (4) 0.0769 (5) 0.0653 (5) −0.0077 (3) −0.0103 (3) −0.0237 (4)
Br2 0.0559 (4) 0.0717 (5) 0.0471 (4) 0.0049 (3) −0.0153 (3) −0.0228 (3)
O1 0.045 (2) 0.0381 (19) 0.056 (2) 0.0031 (15) −0.0190 (17) −0.0109 (17)
O2 0.051 (2) 0.061 (3) 0.067 (3) −0.006 (2) −0.014 (2) −0.010 (2)
C1 0.048 (3) 0.036 (3) 0.046 (3) 0.001 (2) −0.016 (2) −0.012 (2)
C2 0.054 (3) 0.042 (3) 0.059 (3) 0.001 (2) −0.026 (3) −0.015 (3)
C3 0.070 (4) 0.051 (3) 0.053 (3) 0.013 (3) −0.029 (3) −0.022 (3)
C4 0.061 (4) 0.051 (3) 0.043 (3) 0.012 (3) −0.015 (3) −0.015 (3)
C5 0.051 (3) 0.043 (3) 0.052 (3) 0.008 (2) −0.016 (2) −0.012 (2)
C6 0.046 (3) 0.043 (3) 0.043 (3) 0.006 (2) −0.018 (2) −0.010 (2)
C7 0.040 (3) 0.052 (3) 0.049 (3) −0.002 (2) −0.014 (2) −0.014 (3)
C8 0.046 (3) 0.045 (3) 0.045 (3) 0.005 (2) −0.019 (2) −0.012 (2)
C9 0.040 (2) 0.033 (2) 0.053 (3) 0.0027 (19) −0.017 (2) −0.008 (2)
C10 0.042 (3) 0.056 (3) 0.055 (3) 0.007 (2) −0.022 (2) −0.020 (3)
C11 0.062 (4) 0.058 (4) 0.086 (5) 0.012 (3) −0.031 (4) −0.034 (4)

Geometric parameters (Å, º)

Br1—C5 1.900 (7) C7—C8 1.528 (9)
Br2—C8 1.946 (6) C8—C9 1.531 (8)
O1—C9 1.446 (7) C10—C11 1.489 (11)
O1—C10 1.357 (8) C2—H2 0.9300
O2—C10 1.210 (9) C3—H3 0.9300
C1—C2 1.400 (9) C4—H4 0.9300
C1—C6 1.384 (9) C7—H7A 0.9700
C1—C9 1.512 (8) C7—H7B 0.9700
C2—C3 1.374 (10) C8—H8 0.9800
C3—C4 1.405 (11) C9—H9 0.9800
C4—C5 1.368 (9) C11—H11A 0.9600
C5—C6 1.399 (9) C11—H11B 0.9600
C6—C7 1.493 (8) C11—H11C 0.9600
C9—O1—C10 116.4 (5) C1—C2—H2 121.00
C2—C1—C6 121.9 (6) C3—C2—H2 121.00
C2—C1—C9 128.1 (6) C2—C3—H3 120.00
C6—C1—C9 110.0 (5) C4—C3—H3 120.00
C1—C2—C3 118.9 (6) C3—C4—H4 120.00
C2—C3—C4 120.1 (6) C5—C4—H4 120.00
C3—C4—C5 120.0 (6) C6—C7—H7A 112.00
Br1—C5—C4 120.1 (5) C6—C7—H7B 111.00
Br1—C5—C6 118.7 (5) C8—C7—H7A 112.00
C4—C5—C6 121.3 (6) C8—C7—H7B 112.00
C1—C6—C5 117.8 (6) H7A—C7—H7B 109.00
C1—C6—C7 112.1 (5) Br2—C8—H8 108.00
C5—C6—C7 130.1 (6) C7—C8—H8 108.00
C6—C7—C8 101.3 (5) C9—C8—H8 108.00
Br2—C8—C7 112.1 (4) O1—C9—H9 112.00
Br2—C8—C9 113.7 (4) C1—C9—H9 112.00
C7—C8—C9 107.2 (5) C8—C9—H9 112.00
O1—C9—C1 106.8 (4) C10—C11—H11A 109.00
O1—C9—C8 111.9 (5) C10—C11—H11B 109.00
C1—C9—C8 101.4 (5) C10—C11—H11C 109.00
O1—C10—O2 124.1 (6) H11A—C11—H11B 109.00
O1—C10—C11 110.8 (6) H11A—C11—H11C 109.00
O2—C10—C11 125.0 (7) H11B—C11—H11C 109.00
C9—O1—C10—C11 −170.2 (6) C2—C3—C4—C5 −0.4 (11)
C10—O1—C9—C1 −150.4 (5) C3—C4—C5—C6 0.1 (10)
C10—O1—C9—C8 99.5 (6) C3—C4—C5—Br1 179.5 (5)
C9—O1—C10—O2 10.3 (9) Br1—C5—C6—C7 −0.3 (9)
C9—C1—C2—C3 −177.0 (6) C4—C5—C6—C1 1.4 (9)
C2—C1—C6—C5 −2.7 (9) C4—C5—C6—C7 179.2 (6)
C2—C1—C6—C7 179.2 (5) Br1—C5—C6—C1 −178.0 (4)
C6—C1—C2—C3 2.5 (9) C1—C6—C7—C8 −15.9 (7)
C6—C1—C9—O1 −99.5 (6) C5—C6—C7—C8 166.3 (6)
C6—C1—C9—C8 17.8 (6) C6—C7—C8—Br2 152.3 (4)
C2—C1—C9—O1 80.1 (7) C6—C7—C8—C9 26.7 (6)
C9—C1—C6—C5 176.8 (5) Br2—C8—C9—C1 −152.1 (4)
C9—C1—C6—C7 −1.3 (7) C7—C8—C9—O1 86.0 (6)
C2—C1—C9—C8 −162.7 (6) C7—C8—C9—C1 −27.5 (6)
C1—C2—C3—C4 −0.8 (10) Br2—C8—C9—O1 −38.6 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O2 0.98 2.36 2.704 (8) 100

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2559).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Çakmak, O., Erenler, R., Tutar, A. & Çelik, N. (2006). J. Org. Chem. 71, 1795–1801. [DOI] [PubMed]
  3. Catto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359–1366. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Erenler, R. & Çakmak, O. (2004). J. Chem. Res. pp. 566–569.
  6. Erenler, R., Demirtaş, İ., Büyükkıdan, B. & Çakmak, O. (2006). J. Chem. Res. pp. 753–757.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. McClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197–5201. [DOI] [PubMed]
  10. Mitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59–62.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Snyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524–5527. [DOI] [PMC free article] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  15. Wu, Y. J. (2006). Tetrahedron Lett. 47, 8459–8461.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023173/fj2559sup1.cif

e-68-o1884-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023173/fj2559Isup2.hkl

e-68-o1884-Isup2.hkl (129.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023173/fj2559Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES