Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1885. doi: 10.1107/S1600536812023276

N-(4-Methyl­phenyl­sulfon­yl)succinamic acid

H Purandara a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3379445  PMID: 22719643

Abstract

In the crystal structure of the title compound, C11H13NO5S, the amide C=O and the carboxyl C=O groups of the acid segment orient themselves away from each other. The dihedral angle between the benzene ring and the amide group is 69.0 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature  

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000); Saraswathi et al. (2011), of N-chloro­aryl­amides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and of N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983); Usha & Gowda (2006).graphic file with name e-68-o1885-scheme1.jpg

Experimental  

Crystal data  

  • C11H13NO5S

  • M r = 271.28

  • Monoclinic, Inline graphic

  • a = 10.2496 (9) Å

  • b = 17.041 (2) Å

  • c = 7.4721 (6) Å

  • β = 101.909 (9)°

  • V = 1277.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.48 × 0.32 × 0.16 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.883, T max = 0.959

  • 4739 measured reflections

  • 2597 independent reflections

  • 2107 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.110

  • S = 1.12

  • 2597 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023276/rz2761sup1.cif

e-68-o1885-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023276/rz2761Isup2.hkl

e-68-o1885-Isup2.hkl (127.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023276/rz2761Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.14 (2) 2.948 (2) 164 (2)
O5—H5O⋯O4ii 0.83 (2) 1.83 (2) 2.663 (3) 178 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Saraswathi et al., 2011); N-chloroarylsulfonamides (Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-methylphenylsulfonyl)succinamic acid has been determined (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment are anti to each other. Further, the amide C═O and the carboxyl C═O of the acid segment orient themselves away from each other, in contrast to the anti conformation observed between the the amide oxygen and the carboxyl oxygen in N-(4-methylphenyl)-succinamic acid (I) (Saraswathi et al., 2011). But both the amide oxygen and the carboxyl oxygen are anti to the H atoms on the adjacent –CH2 groups, in both the compounds.

In the title compound, the C═O and O—H bonds of the acid group are in syn position to each other, similar to that observed in (I). The molecule is bent at the S-atom with the C1–S1–N1–C7 torsion angle of 79.2 (1)°. Further, the dihedral angle between the phenyl ring and the amide group is 69.0 (2)°. In the crystal, the pairs of O—H···O and N—H···O intermolecular hydrogen bonds link the molecules into layers parallel to the bc plane (Table 1, Fig. 2).

Experimental

Succinic anhydride (0.015 mole) and 4-dimethylaminopyridine (0.01 mole) were added to a solution of p-toluenesulfonamide (0.01 mole) in dichloromethane. The reaction mixture was strirred for 18 h at room temperature and set aside for completion of the reaction. The reaction mixture was concentrated to dryness. The resultant title compound was washed with dilute HCl and then with water thoroughly, to remove the unreacted base and the succinic anhydride. It was recrystallized to constant melting point from ethyl acetate (173–175 °C). The purity of the compound was checked and characterized by its infrared spectrum. Prism-like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

The H atoms of the NH group and the OH group were located in a difference Fourier map and later restrained to the distances of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H13NO5S F(000) = 568
Mr = 271.28 Dx = 1.411 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2495 reflections
a = 10.2496 (9) Å θ = 3.0–27.6°
b = 17.041 (2) Å µ = 0.27 mm1
c = 7.4721 (6) Å T = 293 K
β = 101.909 (9)° Prism, colourless
V = 1277.0 (2) Å3 0.48 × 0.32 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2597 independent reflections
Radiation source: fine-focus sealed tube 2107 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −12→11
Tmin = 0.883, Tmax = 0.959 k = −21→8
4739 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.034P)2 + 0.9166P] where P = (Fo2 + 2Fc2)/3
2597 reflections (Δ/σ)max = 0.001
170 parameters Δρmax = 0.23 e Å3
2 restraints Δρmin = −0.32 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1649 (2) 0.82620 (14) 0.0924 (3) 0.0398 (5)
C2 0.1077 (3) 0.75638 (15) 0.0207 (4) 0.0507 (6)
H2 0.1604 0.7126 0.0132 0.061*
C3 −0.0291 (3) 0.75296 (17) −0.0394 (4) 0.0625 (7)
H3 −0.0682 0.7063 −0.0881 0.075*
C4 −0.1092 (3) 0.81770 (18) −0.0286 (4) 0.0607 (7)
C5 −0.0496 (3) 0.88660 (16) 0.0469 (4) 0.0582 (7)
H5 −0.1025 0.9301 0.0572 0.070*
C6 0.0864 (3) 0.89152 (14) 0.1068 (4) 0.0482 (6)
H6 0.1255 0.9381 0.1563 0.058*
C7 0.3668 (2) 0.93791 (13) −0.0993 (3) 0.0349 (5)
C8 0.4086 (2) 0.94773 (14) −0.2799 (3) 0.0394 (5)
H8A 0.3879 0.9001 −0.3514 0.047*
H8B 0.5042 0.9557 −0.2582 0.047*
C9 0.3388 (2) 1.01660 (14) −0.3874 (3) 0.0439 (6)
H9A 0.3582 1.0638 −0.3143 0.053*
H9B 0.3743 1.0236 −0.4971 0.053*
C10 0.1912 (2) 1.00645 (14) −0.4408 (3) 0.0419 (5)
C11 −0.2586 (3) 0.8130 (2) −0.0975 (6) 0.0995 (13)
H11A −0.2856 0.7590 −0.1091 0.119*
H11B −0.2822 0.8382 −0.2147 0.119*
H11C −0.3029 0.8389 −0.0126 0.119*
N1 0.3902 (2) 0.86326 (11) −0.0248 (2) 0.0387 (4)
H1N 0.404 (3) 0.8261 (12) −0.090 (3) 0.046*
O1 0.39301 (18) 0.75502 (11) 0.1880 (2) 0.0565 (5)
O2 0.37311 (18) 0.89014 (11) 0.2992 (2) 0.0558 (5)
O3 0.32175 (17) 0.99012 (10) −0.0214 (2) 0.0479 (4)
O4 0.13237 (16) 0.94917 (10) −0.4003 (3) 0.0552 (5)
O5 0.13192 (19) 1.06525 (12) −0.5367 (3) 0.0672 (6)
H5O 0.0496 (18) 1.0596 (19) −0.557 (4) 0.081*
S1 0.33860 (6) 0.83267 (4) 0.15920 (7) 0.04120 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0465 (13) 0.0405 (13) 0.0342 (11) −0.0018 (10) 0.0130 (9) 0.0004 (10)
C2 0.0567 (15) 0.0388 (13) 0.0565 (15) 0.0028 (12) 0.0116 (12) −0.0042 (12)
C3 0.0639 (18) 0.0487 (16) 0.0723 (19) −0.0113 (14) 0.0080 (14) −0.0089 (14)
C4 0.0482 (15) 0.0634 (18) 0.0701 (18) −0.0024 (13) 0.0112 (13) 0.0047 (15)
C5 0.0537 (16) 0.0479 (15) 0.0771 (19) 0.0076 (13) 0.0230 (14) 0.0025 (14)
C6 0.0562 (15) 0.0359 (13) 0.0564 (15) −0.0021 (11) 0.0209 (12) −0.0030 (11)
C7 0.0315 (11) 0.0392 (12) 0.0328 (11) −0.0044 (9) 0.0038 (9) −0.0022 (9)
C8 0.0365 (12) 0.0479 (13) 0.0336 (11) −0.0005 (10) 0.0072 (9) 0.0029 (10)
C9 0.0405 (12) 0.0479 (14) 0.0430 (12) −0.0051 (11) 0.0082 (10) 0.0080 (11)
C10 0.0464 (13) 0.0400 (13) 0.0376 (12) 0.0007 (11) 0.0047 (10) 0.0042 (10)
C11 0.054 (2) 0.098 (3) 0.140 (4) −0.0050 (19) 0.003 (2) −0.001 (3)
N1 0.0485 (11) 0.0360 (10) 0.0341 (10) 0.0027 (9) 0.0142 (8) −0.0011 (8)
O1 0.0609 (11) 0.0531 (11) 0.0559 (11) 0.0110 (9) 0.0129 (9) 0.0202 (9)
O2 0.0649 (11) 0.0689 (12) 0.0326 (8) −0.0113 (10) 0.0075 (8) −0.0062 (8)
O3 0.0580 (10) 0.0423 (10) 0.0467 (9) 0.0046 (8) 0.0181 (8) −0.0041 (8)
O4 0.0420 (9) 0.0466 (10) 0.0718 (12) −0.0054 (8) −0.0001 (8) 0.0162 (9)
O5 0.0451 (10) 0.0579 (12) 0.0924 (15) 0.0011 (9) 0.0001 (10) 0.0301 (11)
S1 0.0478 (3) 0.0445 (3) 0.0315 (3) −0.0001 (3) 0.0087 (2) 0.0046 (2)

Geometric parameters (Å, º)

C1—C2 1.385 (3) C8—H8A 0.9700
C1—C6 1.390 (3) C8—H8B 0.9700
C1—S1 1.750 (2) C9—C10 1.493 (3)
C2—C3 1.382 (4) C9—H9A 0.9700
C2—H2 0.9300 C9—H9B 0.9700
C3—C4 1.387 (4) C10—O4 1.218 (3)
C3—H3 0.9300 C10—O5 1.307 (3)
C4—C5 1.388 (4) C11—H11A 0.9600
C4—C11 1.514 (4) C11—H11B 0.9600
C5—C6 1.377 (4) C11—H11C 0.9600
C5—H5 0.9300 N1—S1 1.6559 (19)
C6—H6 0.9300 N1—H1N 0.828 (16)
C7—O3 1.206 (3) O1—S1 1.4349 (19)
C7—N1 1.390 (3) O2—S1 1.4234 (18)
C7—C8 1.507 (3) O5—H5O 0.832 (18)
C8—C9 1.516 (3)
C2—C1—C6 120.8 (2) H8A—C8—H8B 107.9
C2—C1—S1 119.28 (19) C10—C9—C8 113.14 (19)
C6—C1—S1 119.88 (19) C10—C9—H9A 109.0
C3—C2—C1 118.8 (2) C8—C9—H9A 109.0
C3—C2—H2 120.6 C10—C9—H9B 109.0
C1—C2—H2 120.6 C8—C9—H9B 109.0
C2—C3—C4 121.3 (3) H9A—C9—H9B 107.8
C2—C3—H3 119.3 O4—C10—O5 123.6 (2)
C4—C3—H3 119.3 O4—C10—C9 123.6 (2)
C3—C4—C5 118.7 (3) O5—C10—C9 112.9 (2)
C3—C4—C11 120.5 (3) C4—C11—H11A 109.5
C5—C4—C11 120.8 (3) C4—C11—H11B 109.5
C6—C5—C4 121.0 (2) H11A—C11—H11B 109.5
C6—C5—H5 119.5 C4—C11—H11C 109.5
C4—C5—H5 119.5 H11A—C11—H11C 109.5
C5—C6—C1 119.3 (2) H11B—C11—H11C 109.5
C5—C6—H6 120.3 C7—N1—S1 124.26 (16)
C1—C6—H6 120.3 C7—N1—H1N 120.1 (18)
O3—C7—N1 122.2 (2) S1—N1—H1N 111.6 (18)
O3—C7—C8 123.9 (2) C10—O5—H5O 111 (2)
N1—C7—C8 113.78 (19) O2—S1—O1 119.62 (11)
C7—C8—C9 111.76 (19) O2—S1—N1 108.68 (10)
C7—C8—H8A 109.3 O1—S1—N1 103.54 (10)
C9—C8—H8A 109.3 O2—S1—C1 109.68 (11)
C7—C8—H8B 109.3 O1—S1—C1 109.01 (11)
C9—C8—H8B 109.3 N1—S1—C1 105.27 (10)
C6—C1—C2—C3 1.0 (4) C8—C9—C10—O4 0.8 (3)
S1—C1—C2—C3 −177.0 (2) C8—C9—C10—O5 −178.6 (2)
C1—C2—C3—C4 −0.2 (4) O3—C7—N1—S1 10.0 (3)
C2—C3—C4—C5 −0.9 (5) C8—C7—N1—S1 −172.55 (15)
C2—C3—C4—C11 179.2 (3) C7—N1—S1—O2 −48.4 (2)
C3—C4—C5—C6 1.3 (4) C7—N1—S1—O1 −176.60 (18)
C11—C4—C5—C6 −178.8 (3) C7—N1—S1—C1 69.0 (2)
C4—C5—C6—C1 −0.5 (4) C2—C1—S1—O2 −153.06 (19)
C2—C1—C6—C5 −0.7 (4) C6—C1—S1—O2 28.8 (2)
S1—C1—C6—C5 177.4 (2) C2—C1—S1—O1 −20.3 (2)
O3—C7—C8—C9 −23.2 (3) C6—C1—S1—O1 161.55 (18)
N1—C7—C8—C9 159.36 (19) C2—C1—S1—N1 90.2 (2)
C7—C8—C9—C10 −63.7 (3) C6—C1—S1—N1 −87.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (2) 2.14 (2) 2.948 (2) 164 (2)
O5—H5O···O4ii 0.83 (2) 1.83 (2) 2.663 (3) 178 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+2, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2761).

References

  1. Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. [DOI] [PubMed]
  2. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  3. Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.
  4. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Saraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023276/rz2761sup1.cif

e-68-o1885-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023276/rz2761Isup2.hkl

e-68-o1885-Isup2.hkl (127.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023276/rz2761Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES