Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1887. doi: 10.1107/S1600536812022945

2-Chloro-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

R Archana a, E Yamuna b, K J Rajendra Prasad b, A Thiruvalluvar a,*, R J Butcher c, Sushil K Gupta d, Sema Öztürk Yildirim e,f
PMCID: PMC3379447  PMID: 22719645

Abstract

In the title mol­ecule, C13H12ClNO, the dihedral angle between the benzene and pyrrole rings is 1.38 (9)°. The cyclo­heptene ring adopts a distorted twist chair and sofa conformation. Inter­molecular N—H⋯O hydrogen bonds form an R 2 2(10) loop in the crystal packing. Further, weak C—H⋯O and C—H⋯π (involving the benzene ring) inter­actions are found in the crystal structure.

Related literature  

For the biological activity of indole derivatives, see: Gribble (2000); Knölker & Reddy (2002); Kawasaki & Higuchi (2005); Bennasar et al. (1993); Hong et al. (2006); Lacoume et al. (1972); Joseph et al. (1998, 2000). For related crystallographic studies of cyclo­hept[b]indoles, see: Archana et al. (2010, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1887-scheme1.jpg

Experimental  

Crystal data  

  • C13H12ClNO

  • M r = 233.69

  • Monoclinic, Inline graphic

  • a = 11.6354 (4) Å

  • b = 6.3798 (2) Å

  • c = 14.4513 (5) Å

  • β = 92.767 (3)°

  • V = 1071.49 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.30 mm

Data collection  

  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan CrysAlis PRO (Agilent, 2011) T min = 0.879, T max = 0.907

  • 4977 measured reflections

  • 2274 independent reflections

  • 1836 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.096

  • S = 1.04

  • 2274 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022945/tk5099sup1.cif

e-68-o1887-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022945/tk5099Isup2.hkl

e-68-o1887-Isup2.hkl (109.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022945/tk5099Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812022945/tk5099Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C4,C4A,C10B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O6i 0.837 (19) 2.13 (2) 2.904 (2) 153.2 (19)
C9—H9A⋯O6ii 0.99 2.55 3.228 (2) 125
C7—H7ACg2iii 0.99 2.95 3.7969 (19) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

An indole nucleus coupled with prenylated indoles, carbazoles, indoloquinoline and cyclohept[b]indole alkaloids show high levels of biological activities including anti-fungal, anti-bacterial, anti-tumour and anti-HIV activities, as well as DNA interaction properties (Gribble, 2000; Knölker & Reddy, 2002; Kawasaki & Higuchi, 2005; Bennasar et al., 1993; Hong et al., 2006; Lacoume et al., 1972; Joseph et al., 1998; Joseph et al., 2000). Recently, we reported related crystallographic studies for some cyclohept[b]indoles from our laboratory (Archana et al., 2010; Archana et al., 2011).

In the title molecule, Fig. 1, the dihedral angle between the benzene and pyrrole rings is 1.38 (9)°. The cycloheptene ring adopts a distorted twist chair and sofa conformation. Intermolecular N5—H5···O6 hydrogen bonds form a R22(10) (Bernstein et al., 1995) rings in the crystal structure. A weak C9—H9A···O6 intermolecular hydrogen bond along with a C7—H7A···π interaction, involving the benzene (C1–C4,C4A,C10B) ring, are also found in the crystal structure, Fig. 2 and Table 1.

Experimental

A solution of 2-(2-(4-chlorophenyl)hydrazono)cycloheptanone (0.486 g, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured onto cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with (98:2, v/v) petroleum ether-ethyl acetate mixture yielded the title compound (0.167 g, 72%). This was recrystallized from ethanol.

Refinement

The N—H atom was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed down the b axis, showing the formation of a R22(10) ring by N—H···O hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H12ClNO F(000) = 488
Mr = 233.69 Dx = 1.449 Mg m3
Monoclinic, P21/n Melting point: 389 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 11.6354 (4) Å Cell parameters from 2495 reflections
b = 6.3798 (2) Å θ = 3.2–28.4°
c = 14.4513 (5) Å µ = 0.33 mm1
β = 92.767 (3)° T = 150 K
V = 1071.49 (6) Å3 Block, colourless
Z = 4 0.40 × 0.30 × 0.30 mm

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 2274 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1836 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 10.5081 pixels mm-1 θmax = 28.4°, θmin = 3.5°
ω scans h = −14→15
Absorption correction: multi-scan CrysAlis PRO (Agilent, 2011) k = −8→7
Tmin = 0.879, Tmax = 0.907 l = −12→19
4977 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4689P] where P = (Fo2 + 2Fc2)/3
2274 reflections (Δ/σ)max = 0.001
149 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.59361 (4) −0.24239 (8) 0.08648 (3) 0.0357 (2)
O6 0.57812 (10) 0.3697 (2) 0.60006 (8) 0.0280 (4)
N5 0.56976 (12) 0.2648 (3) 0.42004 (10) 0.0225 (5)
C1 0.63668 (14) −0.1524 (3) 0.26774 (12) 0.0244 (5)
C2 0.58717 (14) −0.0838 (3) 0.18511 (12) 0.0262 (5)
C3 0.53084 (14) 0.1108 (3) 0.17503 (12) 0.0275 (6)
C4 0.52189 (15) 0.2416 (3) 0.24985 (12) 0.0256 (5)
C4A 0.56937 (14) 0.1720 (3) 0.33521 (12) 0.0223 (5)
C5A 0.62720 (14) 0.1378 (3) 0.48468 (11) 0.0211 (5)
C6 0.63461 (14) 0.2152 (3) 0.58029 (12) 0.0229 (5)
C7 0.71201 (15) 0.1148 (3) 0.65476 (12) 0.0273 (5)
C8 0.80230 (15) −0.0440 (3) 0.62766 (12) 0.0258 (5)
C9 0.75353 (15) −0.2421 (3) 0.58213 (12) 0.0254 (5)
C10 0.73457 (16) −0.2246 (3) 0.47726 (12) 0.0254 (5)
C10A 0.66477 (13) −0.0419 (3) 0.44109 (12) 0.0214 (5)
C10B 0.62718 (14) −0.0218 (3) 0.34549 (12) 0.0220 (5)
H1 0.67583 −0.28293 0.27228 0.0293*
H3 0.49882 0.15197 0.11609 0.0330*
H4 0.48492 0.37398 0.24388 0.0307*
H5 0.5389 (17) 0.380 (3) 0.4311 (14) 0.031 (6)*
H7A 0.66192 0.04481 0.69880 0.0328*
H7B 0.75270 0.22911 0.68916 0.0328*
H8A 0.85431 0.02420 0.58455 0.0309*
H8B 0.84908 −0.08411 0.68393 0.0309*
H9A 0.67922 −0.27558 0.60929 0.0305*
H9B 0.80688 −0.35980 0.59647 0.0305*
H10A 0.81089 −0.21821 0.44992 0.0305*
H10B 0.69653 −0.35477 0.45448 0.0305*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0376 (3) 0.0460 (3) 0.0233 (2) 0.0078 (2) 0.0001 (2) −0.0094 (2)
O6 0.0322 (7) 0.0244 (7) 0.0275 (7) 0.0012 (5) 0.0032 (5) −0.0036 (6)
N5 0.0242 (8) 0.0205 (8) 0.0229 (8) 0.0027 (7) 0.0009 (6) −0.0004 (7)
C1 0.0213 (8) 0.0259 (9) 0.0261 (9) 0.0005 (8) 0.0008 (7) −0.0003 (8)
C2 0.0241 (9) 0.0336 (10) 0.0209 (9) −0.0007 (8) 0.0026 (7) −0.0058 (8)
C3 0.0219 (9) 0.0382 (11) 0.0222 (9) 0.0016 (8) 0.0002 (7) 0.0042 (8)
C4 0.0231 (8) 0.0269 (10) 0.0267 (9) 0.0039 (8) 0.0013 (7) 0.0035 (8)
C4A 0.0182 (8) 0.0245 (9) 0.0242 (9) −0.0027 (7) 0.0016 (7) −0.0005 (8)
C5A 0.0187 (8) 0.0209 (9) 0.0235 (8) −0.0033 (7) 0.0003 (6) 0.0007 (7)
C6 0.0224 (8) 0.0220 (9) 0.0245 (9) −0.0069 (7) 0.0031 (7) −0.0008 (7)
C7 0.0322 (9) 0.0287 (10) 0.0208 (9) −0.0034 (8) −0.0011 (7) 0.0004 (8)
C8 0.0255 (9) 0.0280 (10) 0.0234 (9) −0.0028 (8) −0.0037 (7) 0.0025 (8)
C9 0.0259 (9) 0.0229 (9) 0.0269 (9) 0.0003 (7) −0.0039 (8) 0.0035 (8)
C10 0.0272 (9) 0.0222 (9) 0.0265 (9) 0.0021 (7) −0.0023 (7) −0.0013 (8)
C10A 0.0175 (8) 0.0236 (9) 0.0230 (9) −0.0036 (7) 0.0005 (6) −0.0005 (7)
C10B 0.0177 (8) 0.0244 (9) 0.0238 (8) −0.0024 (7) 0.0009 (7) 0.0002 (8)

Geometric parameters (Å, º)

Cl2—C2 1.7525 (19) C8—C9 1.522 (3)
O6—C6 1.226 (2) C9—C10 1.525 (2)
N5—C4A 1.361 (2) C10—C10A 1.500 (3)
N5—C5A 1.384 (2) C10A—C10B 1.435 (2)
N5—H5 0.837 (19) C1—H1 0.9500
C1—C10B 1.407 (3) C3—H3 0.9500
C1—C2 1.372 (2) C4—H4 0.9500
C2—C3 1.408 (3) C7—H7A 0.9900
C3—C4 1.374 (3) C7—H7B 0.9900
C4—C4A 1.399 (2) C8—H8A 0.9900
C4A—C10B 1.412 (3) C8—H8B 0.9900
C5A—C6 1.466 (2) C9—H9A 0.9900
C5A—C10A 1.389 (3) C9—H9B 0.9900
C6—C7 1.512 (2) C10—H10A 0.9900
C7—C8 1.524 (3) C10—H10B 0.9900
C4A—N5—C5A 109.50 (16) C1—C10B—C10A 133.14 (17)
C4A—N5—H5 124.8 (14) C2—C1—H1 121.00
C5A—N5—H5 125.7 (14) C10B—C1—H1 121.00
C2—C1—C10B 117.39 (17) C2—C3—H3 120.00
Cl2—C2—C3 117.57 (13) C4—C3—H3 120.00
Cl2—C2—C1 119.41 (14) C3—C4—H4 121.00
C1—C2—C3 123.02 (17) C4A—C4—H4 121.00
C2—C3—C4 120.45 (16) C6—C7—H7A 107.00
C3—C4—C4A 117.35 (17) C6—C7—H7B 107.00
N5—C4A—C4 129.78 (18) C8—C7—H7A 107.00
N5—C4A—C10B 107.77 (15) C8—C7—H7B 107.00
C4—C4A—C10B 122.44 (17) H7A—C7—H7B 107.00
N5—C5A—C6 116.33 (16) C7—C8—H8A 109.00
C6—C5A—C10A 134.44 (16) C7—C8—H8B 109.00
N5—C5A—C10A 109.23 (15) C9—C8—H8A 109.00
O6—C6—C7 118.84 (16) C9—C8—H8B 109.00
C5A—C6—C7 122.28 (16) H8A—C8—H8B 108.00
O6—C6—C5A 118.86 (16) C8—C9—H9A 109.00
C6—C7—C8 119.54 (15) C8—C9—H9B 109.00
C7—C8—C9 114.57 (15) C10—C9—H9A 109.00
C8—C9—C10 113.70 (15) C10—C9—H9B 109.00
C9—C10—C10A 116.94 (15) H9A—C9—H9B 108.00
C5A—C10A—C10B 105.96 (15) C9—C10—H10A 108.00
C10—C10A—C10B 122.67 (16) C9—C10—H10B 108.00
C5A—C10A—C10 131.32 (16) C10A—C10—H10A 108.00
C4A—C10B—C10A 107.53 (16) C10A—C10—H10B 108.00
C1—C10B—C4A 119.33 (16) H10A—C10—H10B 107.00
C5A—N5—C4A—C4 −180.00 (18) N5—C5A—C6—C7 −168.77 (16)
C5A—N5—C4A—C10B 0.65 (19) C10A—C5A—C6—O6 −169.76 (18)
C4A—N5—C5A—C6 −179.61 (15) C10A—C5A—C6—C7 12.0 (3)
C4A—N5—C5A—C10A −0.2 (2) N5—C5A—C10A—C10 177.14 (17)
C10B—C1—C2—Cl2 −178.65 (13) N5—C5A—C10A—C10B −0.37 (19)
C10B—C1—C2—C3 1.6 (3) C6—C5A—C10A—C10 −3.6 (3)
C2—C1—C10B—C4A −0.8 (2) C6—C5A—C10A—C10B 178.93 (18)
C2—C1—C10B—C10A 178.53 (18) O6—C6—C7—C8 −166.26 (16)
Cl2—C2—C3—C4 179.40 (14) C5A—C6—C7—C8 12.0 (3)
C1—C2—C3—C4 −0.8 (3) C6—C7—C8—C9 −63.1 (2)
C2—C3—C4—C4A −0.8 (3) C7—C8—C9—C10 88.01 (18)
C3—C4—C4A—N5 −177.70 (17) C8—C9—C10—C10A −52.9 (2)
C3—C4—C4A—C10B 1.6 (3) C9—C10—C10A—C5A 11.6 (3)
N5—C4A—C10B—C1 178.59 (15) C9—C10—C10A—C10B −171.28 (16)
N5—C4A—C10B—C10A −0.87 (19) C5A—C10A—C10B—C1 −178.59 (18)
C4—C4A—C10B—C1 −0.8 (3) C5A—C10A—C10B—C4A 0.75 (19)
C4—C4A—C10B—C10A 179.72 (16) C10—C10A—C10B—C1 3.6 (3)
N5—C5A—C6—O6 9.5 (2) C10—C10A—C10B—C4A −177.02 (15)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C4,C4A,C10B ring.

D—H···A D—H H···A D···A D—H···A
N5—H5···O6i 0.837 (19) 2.13 (2) 2.904 (2) 153.2 (19)
C9—H9A···O6ii 0.99 2.55 3.228 (2) 125
C7—H7A···Cg2iii 0.99 2.95 3.7969 (19) 144

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5099).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882. [DOI] [PMC free article] [PubMed]
  3. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2011). Acta Cryst. E67, o1325. [DOI] [PMC free article] [PubMed]
  4. Bennasar, M.-L., Vidal, B. & Bosch, J. (1993). J. Am. Chem. Soc. 115, 5340–5341.
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gribble, G. W. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1045–1075.
  8. Hong, B.-C., Jiang, Y.-F., Chang, Y.-L. & Lee, S.-J. (2006). J. Chin. Chem. Soc. 53, 647–662.
  9. Joseph, B., Alagille, D., Mérour, J.-Y. & Léonce, S. (2000). Chem. Pharm. Bull. 48, 1872–1876. [DOI] [PubMed]
  10. Joseph, B., Cornec, O. & Mérour, J.-Y. (1998). Tetrahedron, 54, 7765–7776.
  11. Kawasaki, T. & Higuchi, K. (2005). Nat. Prod. Rep. 22, 761–793. [DOI] [PubMed]
  12. Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4428. [DOI] [PubMed]
  13. Lacoume, B., Milcent, G. & Olivier, A. (1972). Tetrahedron, 28, 667–674.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812022945/tk5099sup1.cif

e-68-o1887-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022945/tk5099Isup2.hkl

e-68-o1887-Isup2.hkl (109.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022945/tk5099Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812022945/tk5099Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES