Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1893. doi: 10.1107/S1600536812021514

1-Isopropyl-4,7-dimethyl-2,8-dinitro­naphthalene

Mouna Chakkar a,*, Najia Oughris a, Ahmed Benharref a, Jean-Claude Daran b, Moha Berraho a
PMCID: PMC3379451  PMID: 22719649

Abstract

The title compound, C15H16N2O4, was synthesized from a mixture of α-himachalene (2-methyl­ene-6,6,9-trimethyl­bicyclo­[5.4.O1,7]undec-8-ene) and β-himachalene (2,6,6,9-tetra­methyl­bicyclo­[5.4.01,7]undeca-1,8-diene) which were isolated from an oil of the Atlas cedar (Cedrus atlantica). The asymmetric unit contains two independent mol­ecules. In each of the two mol­ecules, two O atoms of one nitro group are disordered over two sets of sites with site-occupancy factors of 0.636 (5):0.364 (5) and 0.832 (5):0.168 (5). The crystal structure features weak C—H⋯O hydrogen bonds.

Related literature  

For the isolation of α-himachalene and β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974); Daunis et al. (1981). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004).graphic file with name e-68-o1893-scheme1.jpg

Experimental  

Crystal data  

  • C15H16N2O4

  • M r = 288.30

  • Triclinic, Inline graphic

  • a = 11.7784 (7) Å

  • b = 11.9072 (9) Å

  • c = 12.4494 (10) Å

  • α = 107.928 (7)°

  • β = 112.834 (7)°

  • γ = 104.536 (6)°

  • V = 1387.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.49 × 0.22 × 0.14 mm

Data collection  

  • Agilent Xcalibur Sapphire1 (long-nozzle) diffractometer

  • 25504 measured reflections

  • 4881 independent reflections

  • 4084 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.152

  • S = 1.08

  • 4881 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021514/bt5912sup1.cif

e-68-o1893-sup1.cif (35KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021514/bt5912Isup2.hkl

e-68-o1893-Isup2.hkl (234.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021514/bt5912Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11B—H11C⋯O82i 0.98 2.42 3.243 (6) 142
C11A—H11F⋯O84Aii 0.98 2.43 3.240 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The bicyclic sesquiterpenes α- and β-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004). The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon(10%) gives, with good yield, the aryl-himachalene (Daunis et al., 1981). Treatement of the latter by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 20%. The structure of this new product was confirmed by its crystal structure. The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains two molecules of 1-isopropyl-4,7-dimethyl-2,8-dinitro-naphthalene. The naphthalene ring systems are approximately planar with r.s.d.deviations of 0.087 (2) and 0.090 (2) A°. The bond lengths and angles are within normal ranges in both molecules. In the crystal structure, the two molecules are not parallel but have a dihedral angle of 1.54 (7)°. The crystal structure is stabilized by intermolecular C–H···O hydrogen bonds, which link the molecules into chains parallel to the c axis (Fig. 2, Table 1).

Experimental

In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduct 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of aryl-himachalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 4O ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (98/2) as eluent, to obtain 1.7 g (6 mmol) of the title compound which was recrystallized in ethyl acetate.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). In each of the two molecules, two O atoms of one nitro group are disordered over two positions with site occupancy factors of 0.636 (5)/0.364 (5) for the first molecule, and 0.832 (5)/0.168 (5) for the second molecule.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain parallel to the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H16N2O4 Z = 4
Mr = 288.30 F(000) = 608
Triclinic, P1 Dx = 1.380 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.7784 (7) Å Cell parameters from 13404 reflections
b = 11.9072 (9) Å θ = 3.1–28.4°
c = 12.4494 (10) Å µ = 0.10 mm1
α = 107.928 (7)° T = 180 K
β = 112.834 (7)° Box, orange
γ = 104.536 (6)° 0.49 × 0.22 × 0.14 mm
V = 1387.6 (2) Å3

Data collection

Agilent Xcalibur Sapphire1 (long-nozzle) diffractometer 4084 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.048
Graphite monochromator θmax = 25.0°, θmin = 3.1°
Detector resolution: 8.2632 pixels mm-1 h = −14→14
ω scans k = −14→14
25504 measured reflections l = −14→14
4881 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.9464P] where P = (Fo2 + 2Fc2)/3
4881 reflections (Δ/σ)max < 0.001
425 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N2B 0.12177 (19) −0.0333 (2) 0.42969 (19) 0.0400 (5)
O21 0.04646 (17) −0.14879 (18) 0.35187 (18) 0.0557 (5)
O22 0.08307 (17) 0.05310 (19) 0.45226 (18) 0.0513 (5)
C1B 0.3602 (2) 0.10012 (19) 0.49485 (19) 0.0280 (4)
C2B 0.2692 (2) 0.0062 (2) 0.5059 (2) 0.0312 (5)
C3B 0.3074 (2) −0.0430 (2) 0.5940 (2) 0.0374 (5)
C4B 0.4479 (2) 0.0090 (2) 0.6837 (2) 0.0412 (5)
H4 0.4787 −0.0243 0.7443 0.049*
C5B 0.5394 (2) 0.1052 (2) 0.6852 (2) 0.0386 (5)
H5 0.6324 0.1410 0.7503 0.046*
C6B 0.5015 (2) 0.1544 (2) 0.59319 (19) 0.0312 (5)
C7B 0.6027 (2) 0.2564 (2) 0.5992 (2) 0.0356 (5)
C8B 0.5566 (2) 0.2971 (2) 0.5057 (2) 0.0380 (5)
N8B 0.6494 (2) 0.4042 (2) 0.5031 (2) 0.0534 (6)
O81 0.6072 (3) 0.4850 (3) 0.4795 (4) 0.0800 (15) 0.636 (5)
O82 0.7589 (4) 0.4098 (4) 0.5207 (5) 0.0887 (16) 0.636 (5)
O81B 0.6349 (6) 0.3925 (7) 0.4012 (6) 0.080 (3) 0.364 (5)
O82B 0.7403 (6) 0.4984 (6) 0.6108 (6) 0.077 (2) 0.364 (5)
C9B 0.4217 (2) 0.2397 (2) 0.4043 (2) 0.0371 (5)
H9 0.3981 0.2712 0.3410 0.044*
C10B 0.3226 (2) 0.1397 (2) 0.3930 (2) 0.0305 (4)
C11B 0.2082 (3) −0.1448 (3) 0.6004 (3) 0.0533 (7)
H11A 0.1297 −0.1252 0.5902 0.080*
H11B 0.2525 −0.1450 0.6852 0.080*
H11C 0.1777 −0.2306 0.5301 0.080*
C12B 0.7496 (2) 0.3132 (3) 0.7049 (2) 0.0516 (6)
H12A 0.7877 0.2502 0.6865 0.077*
H12B 0.7553 0.3330 0.7898 0.077*
H12C 0.8011 0.3934 0.7071 0.077*
C13B 0.1839 (2) 0.0751 (2) 0.2675 (2) 0.0363 (5)
H13 0.1263 −0.0044 0.2650 0.044*
C14B 0.1119 (2) 0.1656 (3) 0.2664 (3) 0.0521 (7)
H14A 0.1629 0.2413 0.2620 0.078*
H14B 0.1068 0.1948 0.3464 0.078*
H14C 0.0198 0.1187 0.1900 0.078*
C15B 0.1981 (2) 0.0324 (3) 0.1465 (2) 0.0468 (6)
H15A 0.2485 0.1094 0.1434 0.070*
H15B 0.1076 −0.0167 0.0679 0.070*
H15C 0.2473 −0.0229 0.1504 0.070*
N2A 0.54123 (18) 0.18844 (18) 0.0592 (2) 0.0411 (5)
O21A 0.50204 (18) 0.18713 (19) 0.13648 (19) 0.0555 (5)
O22A 0.60540 (17) 0.12814 (16) 0.03450 (18) 0.0531 (5)
C1A 0.6104 (2) 0.36905 (19) 0.00222 (19) 0.0286 (4)
C2A 0.5054 (2) 0.2631 (2) −0.0138 (2) 0.0322 (5)
C3A 0.3692 (2) 0.2123 (2) −0.1043 (2) 0.0370 (5)
C4A 0.3327 (2) 0.2679 (2) −0.1899 (2) 0.0411 (6)
H4A 0.2395 0.2379 −0.2517 0.049*
C5A 0.4280 (2) 0.3635 (2) −0.1861 (2) 0.0385 (5)
H5A 0.3999 0.3957 −0.2482 0.046*
C6A 0.5681 (2) 0.4170 (2) −0.09219 (19) 0.0321 (5)
C7A 0.6641 (2) 0.5173 (2) −0.0930 (2) 0.0363 (5)
C8A 0.7973 (2) 0.5639 (2) 0.0014 (2) 0.0378 (5)
N8A 0.9075 (2) 0.6642 (3) 0.0088 (3) 0.0509 (6)
O84A 0.8930 (3) 0.7589 (3) −0.0031 (3) 0.0754 (10) 0.832 (5)
O83A 1.0134 (3) 0.6522 (3) 0.0337 (3) 0.0739 (10) 0.832 (5)
O83 0.8868 (16) 0.6378 (15) −0.1107 (14) 0.092 (6) 0.168 (5)
O84 0.985 (2) 0.7387 (19) 0.0982 (18) 0.100 (7) 0.168 (5)
C9A 0.8398 (2) 0.5236 (2) 0.0982 (2) 0.0361 (5)
H9A 0.9337 0.5613 0.1613 0.043*
C10A 0.7506 (2) 0.4317 (2) 0.1052 (2) 0.0315 (5)
C11A 0.2617 (2) 0.1001 (3) −0.1173 (3) 0.0541 (7)
H11D 0.2949 0.0335 −0.1105 0.081*
H11E 0.1791 0.0626 −0.2025 0.081*
H11F 0.2414 0.1314 −0.0475 0.081*
C12A 0.6183 (3) 0.5633 (3) −0.1961 (2) 0.0510 (6)
H12D 0.6971 0.6114 −0.1988 0.077*
H12E 0.5751 0.6203 −0.1747 0.077*
H12F 0.5531 0.4879 −0.2816 0.077*
C13A 0.8082 (2) 0.4112 (2) 0.2271 (2) 0.0380 (5)
H13A 0.7303 0.3530 0.2270 0.046*
C14A 0.9031 (3) 0.3446 (3) 0.2262 (3) 0.0558 (7)
H14D 0.8544 0.2618 0.1464 0.084*
H14E 0.9340 0.3283 0.3029 0.084*
H14F 0.9817 0.4010 0.2289 0.084*
C15A 0.8806 (3) 0.5412 (3) 0.3512 (2) 0.0520 (7)
H15D 0.9080 0.5254 0.4282 0.078*
H15E 0.8187 0.5836 0.3479 0.078*
H15F 0.9612 0.5978 0.3567 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2B 0.0325 (10) 0.0534 (13) 0.0430 (11) 0.0181 (10) 0.0194 (9) 0.0319 (10)
O21 0.0365 (9) 0.0521 (11) 0.0577 (11) 0.0039 (8) 0.0110 (8) 0.0297 (9)
O22 0.0449 (10) 0.0755 (13) 0.0656 (12) 0.0388 (10) 0.0364 (9) 0.0475 (10)
C1B 0.0280 (10) 0.0284 (10) 0.0274 (10) 0.0150 (8) 0.0124 (8) 0.0117 (8)
C2B 0.0309 (11) 0.0349 (11) 0.0294 (10) 0.0173 (9) 0.0141 (9) 0.0152 (9)
C3B 0.0449 (13) 0.0403 (12) 0.0319 (11) 0.0215 (10) 0.0201 (10) 0.0184 (10)
C4B 0.0510 (14) 0.0487 (14) 0.0305 (11) 0.0310 (12) 0.0169 (10) 0.0223 (10)
C5B 0.0370 (12) 0.0441 (13) 0.0281 (11) 0.0244 (11) 0.0087 (9) 0.0130 (10)
C6B 0.0317 (11) 0.0320 (11) 0.0262 (10) 0.0178 (9) 0.0118 (9) 0.0091 (9)
C7B 0.0284 (11) 0.0322 (11) 0.0333 (11) 0.0124 (9) 0.0115 (9) 0.0058 (9)
C8B 0.0330 (11) 0.0310 (11) 0.0413 (12) 0.0077 (9) 0.0171 (10) 0.0133 (10)
N8B 0.0397 (12) 0.0451 (13) 0.0546 (15) 0.0039 (10) 0.0154 (11) 0.0207 (12)
O81 0.058 (2) 0.055 (2) 0.100 (3) 0.0064 (16) 0.0132 (19) 0.052 (2)
O82 0.049 (2) 0.093 (3) 0.143 (4) 0.0239 (19) 0.056 (2) 0.073 (3)
O81B 0.065 (4) 0.080 (5) 0.050 (4) −0.017 (3) 0.023 (3) 0.025 (3)
O82B 0.057 (4) 0.051 (4) 0.074 (4) −0.012 (3) 0.032 (3) 0.003 (3)
C9B 0.0333 (11) 0.0369 (12) 0.0384 (12) 0.0131 (10) 0.0141 (10) 0.0207 (10)
C10B 0.0282 (10) 0.0320 (11) 0.0321 (11) 0.0146 (9) 0.0130 (9) 0.0169 (9)
C11B 0.0593 (16) 0.0582 (16) 0.0484 (15) 0.0211 (13) 0.0264 (13) 0.0353 (13)
C12B 0.0312 (12) 0.0538 (15) 0.0452 (14) 0.0127 (11) 0.0082 (11) 0.0129 (12)
C13B 0.0270 (10) 0.0426 (12) 0.0381 (12) 0.0117 (9) 0.0108 (9) 0.0266 (10)
C14B 0.0374 (13) 0.0678 (17) 0.0646 (17) 0.0292 (12) 0.0213 (12) 0.0460 (15)
C15B 0.0386 (13) 0.0566 (15) 0.0350 (12) 0.0129 (11) 0.0106 (10) 0.0251 (11)
N2A 0.0302 (10) 0.0333 (10) 0.0468 (11) 0.0075 (8) 0.0087 (9) 0.0221 (9)
O21A 0.0447 (10) 0.0669 (12) 0.0605 (11) 0.0169 (9) 0.0240 (9) 0.0441 (10)
O22A 0.0439 (10) 0.0380 (9) 0.0684 (12) 0.0221 (8) 0.0159 (9) 0.0260 (9)
C1A 0.0313 (10) 0.0306 (10) 0.0278 (10) 0.0183 (9) 0.0145 (9) 0.0142 (9)
C2A 0.0311 (11) 0.0314 (11) 0.0308 (11) 0.0152 (9) 0.0113 (9) 0.0141 (9)
C3A 0.0300 (11) 0.0364 (12) 0.0349 (11) 0.0141 (9) 0.0116 (9) 0.0111 (10)
C4A 0.0318 (11) 0.0479 (14) 0.0307 (11) 0.0221 (11) 0.0068 (9) 0.0107 (10)
C5A 0.0407 (12) 0.0484 (14) 0.0292 (11) 0.0282 (11) 0.0133 (10) 0.0190 (10)
C6A 0.0377 (11) 0.0376 (12) 0.0269 (10) 0.0247 (10) 0.0160 (9) 0.0147 (9)
C7A 0.0483 (13) 0.0411 (12) 0.0332 (11) 0.0271 (11) 0.0239 (10) 0.0218 (10)
C8A 0.0418 (12) 0.0405 (12) 0.0423 (12) 0.0196 (10) 0.0258 (11) 0.0238 (10)
N8A 0.0493 (14) 0.0586 (15) 0.0548 (15) 0.0195 (12) 0.0284 (12) 0.0370 (13)
O84A 0.0739 (18) 0.0607 (17) 0.111 (2) 0.0272 (14) 0.0484 (17) 0.0601 (17)
O83A 0.0475 (15) 0.104 (2) 0.102 (2) 0.0338 (15) 0.0435 (15) 0.074 (2)
O83 0.110 (12) 0.088 (11) 0.084 (10) 0.010 (9) 0.072 (10) 0.040 (9)
O84 0.086 (12) 0.092 (13) 0.079 (12) −0.013 (11) 0.032 (10) 0.041 (10)
C9A 0.0326 (11) 0.0399 (12) 0.0389 (12) 0.0162 (10) 0.0163 (10) 0.0229 (10)
C10A 0.0302 (10) 0.0344 (11) 0.0325 (11) 0.0173 (9) 0.0137 (9) 0.0184 (9)
C11A 0.0320 (12) 0.0507 (15) 0.0519 (15) 0.0063 (11) 0.0082 (11) 0.0174 (13)
C12A 0.0633 (16) 0.0617 (16) 0.0449 (14) 0.0343 (14) 0.0286 (13) 0.0355 (13)
C13A 0.0258 (10) 0.0446 (13) 0.0404 (12) 0.0111 (9) 0.0093 (9) 0.0283 (11)
C14A 0.0409 (13) 0.0651 (17) 0.0715 (18) 0.0295 (13) 0.0199 (13) 0.0482 (15)
C15A 0.0418 (13) 0.0590 (16) 0.0378 (13) 0.0104 (12) 0.0080 (11) 0.0264 (12)

Geometric parameters (Å, º)

N2B—O22 1.226 (3) N2A—O21A 1.220 (3)
N2B—O21 1.231 (3) N2A—O22A 1.224 (3)
N2B—C2B 1.474 (3) N2A—C2A 1.477 (3)
C1B—C2B 1.423 (3) C1A—C2A 1.425 (3)
C1B—C10B 1.436 (3) C1A—C6A 1.435 (3)
C1B—C6B 1.442 (3) C1A—C10A 1.441 (3)
C2B—C3B 1.376 (3) C2A—C3A 1.378 (3)
C3B—C4B 1.413 (3) C3A—C4A 1.408 (3)
C3B—C11B 1.505 (3) C3A—C11A 1.507 (3)
C4B—C5B 1.350 (3) C4A—C5A 1.357 (3)
C4B—H4 0.9500 C4A—H4A 0.9500
C5B—C6B 1.415 (3) C5A—C6A 1.419 (3)
C5B—H5 0.9500 C5A—H5A 0.9500
C6B—C7B 1.432 (3) C6A—C7A 1.429 (3)
C7B—C8B 1.368 (3) C7A—C8A 1.371 (3)
C7B—C12B 1.510 (3) C7A—C12A 1.510 (3)
C8B—C9B 1.398 (3) C8A—C9A 1.394 (3)
C8B—N8B 1.475 (3) C8A—N8A 1.476 (3)
N8B—O81B 1.170 (6) N8A—O84 1.028 (18)
N8B—O82 1.201 (4) N8A—O83A 1.220 (3)
N8B—O82B 1.248 (6) N8A—O84A 1.226 (3)
N8B—O81 1.249 (4) N8A—O83 1.328 (13)
C9B—C10B 1.369 (3) C9A—C10A 1.363 (3)
C9B—H9 0.9500 C9A—H9A 0.9500
C10B—C13B 1.533 (3) C10A—C13A 1.529 (3)
C11B—H11A 0.9800 C11A—H11D 0.9800
C11B—H11B 0.9800 C11A—H11E 0.9800
C11B—H11C 0.9800 C11A—H11F 0.9800
C12B—H12A 0.9800 C12A—H12D 0.9800
C12B—H12B 0.9800 C12A—H12E 0.9800
C12B—H12C 0.9800 C12A—H12F 0.9800
C13B—C15B 1.524 (3) C13A—C14A 1.525 (3)
C13B—C14B 1.530 (3) C13A—C15A 1.534 (3)
C13B—H13 1.0000 C13A—H13A 1.0000
C14B—H14A 0.9800 C14A—H14D 0.9800
C14B—H14B 0.9800 C14A—H14E 0.9800
C14B—H14C 0.9800 C14A—H14F 0.9800
C15B—H15A 0.9800 C15A—H15D 0.9800
C15B—H15B 0.9800 C15A—H15E 0.9800
C15B—H15C 0.9800 C15A—H15F 0.9800
O22—N2B—O21 124.71 (19) O21A—N2A—O22A 124.2 (2)
O22—N2B—C2B 116.18 (19) O21A—N2A—C2A 118.68 (19)
O21—N2B—C2B 119.07 (19) O22A—N2A—C2A 117.1 (2)
C2B—C1B—C10B 125.38 (18) C2A—C1A—C6A 115.35 (18)
C2B—C1B—C6B 115.49 (18) C2A—C1A—C10A 125.69 (18)
C10B—C1B—C6B 119.10 (18) C6A—C1A—C10A 118.94 (18)
C3B—C2B—C1B 125.10 (19) C3A—C2A—C1A 125.33 (19)
C3B—C2B—N2B 114.96 (19) C3A—C2A—N2A 114.58 (19)
C1B—C2B—N2B 119.57 (17) C1A—C2A—N2A 119.71 (17)
C2B—C3B—C4B 116.7 (2) C2A—C3A—C4A 116.7 (2)
C2B—C3B—C11B 123.6 (2) C2A—C3A—C11A 123.4 (2)
C4B—C3B—C11B 119.7 (2) C4A—C3A—C11A 119.9 (2)
C5B—C4B—C3B 121.4 (2) C5A—C4A—C3A 121.3 (2)
C5B—C4B—H4 119.3 C5A—C4A—H4A 119.3
C3B—C4B—H4 119.3 C3A—C4A—H4A 119.3
C4B—C5B—C6B 122.3 (2) C4A—C5A—C6A 122.1 (2)
C4B—C5B—H5 118.8 C4A—C5A—H5A 118.9
C6B—C5B—H5 118.8 C6A—C5A—H5A 118.9
C5B—C6B—C7B 120.00 (19) C5A—C6A—C7A 119.76 (19)
C5B—C6B—C1B 118.7 (2) C5A—C6A—C1A 118.9 (2)
C7B—C6B—C1B 121.29 (18) C7A—C6A—C1A 121.30 (19)
C8B—C7B—C6B 115.83 (19) C8A—C7A—C6A 115.99 (19)
C8B—C7B—C12B 124.0 (2) C8A—C7A—C12A 123.4 (2)
C6B—C7B—C12B 120.1 (2) C6A—C7A—C12A 120.5 (2)
C7B—C8B—C9B 123.7 (2) C7A—C8A—C9A 123.6 (2)
C7B—C8B—N8B 121.4 (2) C7A—C8A—N8A 121.6 (2)
C9B—C8B—N8B 114.8 (2) C9A—C8A—N8A 114.7 (2)
O81B—N8B—O82 80.8 (4) O84—N8A—O83A 70.0 (14)
O81B—N8B—O82B 125.3 (4) O84—N8A—O84A 79.0 (12)
O82—N8B—O82B 70.5 (4) O83A—N8A—O84A 122.3 (3)
O81B—N8B—O81 72.2 (4) O84—N8A—O83 130.3 (11)
O82—N8B—O81 122.9 (3) O83A—N8A—O83 87.0 (8)
O82B—N8B—O81 85.6 (4) O84A—N8A—O83 77.5 (7)
O81B—N8B—C8B 117.7 (3) O84—N8A—C8A 120.0 (9)
O82—N8B—C8B 120.3 (3) O83A—N8A—C8A 117.8 (2)
O82B—N8B—C8B 116.9 (3) O84A—N8A—C8A 119.7 (2)
O81—N8B—C8B 116.8 (3) O83—N8A—C8A 109.7 (6)
C10B—C9B—C8B 122.2 (2) C10A—C9A—C8A 122.1 (2)
C10B—C9B—H9 118.9 C10A—C9A—H9A 119.0
C8B—C9B—H9 118.9 C8A—C9A—H9A 119.0
C9B—C10B—C1B 117.35 (18) C9A—C10A—C1A 117.62 (18)
C9B—C10B—C13B 116.21 (18) C9A—C10A—C13A 116.26 (18)
C1B—C10B—C13B 126.32 (18) C1A—C10A—C13A 126.00 (18)
C3B—C11B—H11A 109.5 C3A—C11A—H11D 109.5
C3B—C11B—H11B 109.5 C3A—C11A—H11E 109.5
H11A—C11B—H11B 109.5 H11D—C11A—H11E 109.5
C3B—C11B—H11C 109.5 C3A—C11A—H11F 109.5
H11A—C11B—H11C 109.5 H11D—C11A—H11F 109.5
H11B—C11B—H11C 109.5 H11E—C11A—H11F 109.5
C7B—C12B—H12A 109.5 C7A—C12A—H12D 109.5
C7B—C12B—H12B 109.5 C7A—C12A—H12E 109.5
H12A—C12B—H12B 109.5 H12D—C12A—H12E 109.5
C7B—C12B—H12C 109.5 C7A—C12A—H12F 109.5
H12A—C12B—H12C 109.5 H12D—C12A—H12F 109.5
H12B—C12B—H12C 109.5 H12E—C12A—H12F 109.5
C15B—C13B—C14B 110.56 (19) C14A—C13A—C10A 111.4 (2)
C15B—C13B—C10B 111.11 (18) C14A—C13A—C15A 111.1 (2)
C14B—C13B—C10B 111.19 (19) C10A—C13A—C15A 110.39 (18)
C15B—C13B—H13 107.9 C14A—C13A—H13A 107.9
C14B—C13B—H13 107.9 C10A—C13A—H13A 107.9
C10B—C13B—H13 107.9 C15A—C13A—H13A 107.9
C13B—C14B—H14A 109.5 C13A—C14A—H14D 109.5
C13B—C14B—H14B 109.5 C13A—C14A—H14E 109.5
H14A—C14B—H14B 109.5 H14D—C14A—H14E 109.5
C13B—C14B—H14C 109.5 C13A—C14A—H14F 109.5
H14A—C14B—H14C 109.5 H14D—C14A—H14F 109.5
H14B—C14B—H14C 109.5 H14E—C14A—H14F 109.5
C13B—C15B—H15A 109.5 C13A—C15A—H15D 109.5
C13B—C15B—H15B 109.5 C13A—C15A—H15E 109.5
H15A—C15B—H15B 109.5 H15D—C15A—H15E 109.5
C13B—C15B—H15C 109.5 C13A—C15A—H15F 109.5
H15A—C15B—H15C 109.5 H15D—C15A—H15F 109.5
H15B—C15B—H15C 109.5 H15E—C15A—H15F 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11B—H11C···O82i 0.98 2.42 3.243 (6) 142
C11A—H11F···O84Aii 0.98 2.43 3.240 (5) 139

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5912).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434. [DOI] [PubMed]
  3. Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.
  4. Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932. [DOI] [PubMed]
  5. Daunis, J., Jacquier, R., Lopez, H. & Viallefont, Ph. (1981). J. Chem. Res. pp. 639–649.
  6. El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.
  10. Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.
  11. Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.
  12. Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021514/bt5912sup1.cif

e-68-o1893-sup1.cif (35KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021514/bt5912Isup2.hkl

e-68-o1893-Isup2.hkl (234.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021514/bt5912Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES