Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1896. doi: 10.1107/S1600536812022817

3,3′-Carbonyl­dipyridinium bis­(perchlorate)

Ya Zhang a, Ai-min Li a, Zhi-wei Wang a, Chong-Qing Wan a,*
PMCID: PMC3379454  PMID: 22719652

Abstract

In the title molecular salt, C11H10N2O2+·2ClO4 , the complete cation is generated by crystallographic twofold symmetry. The dihedral angle between the pyridyl rings is 67.07 (7)°. The crystal structure features N—H⋯Cl hydrogen bonds, forming sheets in the ab plane.

Related literature  

For the dipyridyl ketone dication, see: Crook & McElvain (1930); Favaro et al. (1990). For metal complexes of di-3-pyridyl ketone, see: Chen & Mak (2005); Chen et al. (2009).graphic file with name e-68-o1896-scheme1.jpg

Experimental  

Crystal data  

  • C11H10N2O2+·2ClO4

  • M r = 385.11

  • Orthorhombic, Inline graphic

  • a = 8.5315 (3) Å

  • b = 15.1772 (6) Å

  • c = 5.6107 (2) Å

  • V = 726.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.835, T max = 0.905

  • 6343 measured reflections

  • 1285 independent reflections

  • 1235 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.073

  • S = 1.10

  • 1285 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 503 Friedel pairs

  • Flack parameter: 0.10 (10)

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022817/bt5923sup1.cif

e-68-o1896-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022817/bt5923Isup2.hkl

e-68-o1896-Isup2.hkl (63.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022817/bt5923Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯O2 0.86 2.22 2.907 (3) 136
N1i—H7i⋯O4 0.86 2.34 2.967 (2) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the State Key Laboratory of Structural Chemistry of China (Reference No. 20110001) and the Beijing Natural Science Foundation (grant No. 2022011) for financial support.

supplementary crystallographic information

Comment

Di-3-pyridyl ketone is an extraordinary ligand within the family of basic building blocks for construction of metal-organic complexes with intriguing architectures (Chen & Mak, 2005; Chen et al., 2009). However, the crystal structure of salts with the dipyridyl ketone dication is rarely reported until now. Several related literatures discussed the relationship between the acid-base properties of the dipyridyl ketone isomers and the positions of the nitrogen atoms on the rings, which were investigated by spectrophotometric measurements (Crook & McElvain, 1930; Favaro et al., 1990). In the present context, we report the structure of diprotonated di-3-pyridyl ketone perchlorate salt (Fig. 1). The two pyridyl rings exhibit a dihedral angle of 67.07 (7)°. The crystal structure is stabilized by N—H···(perchlorate) hydrogen bonds forming sheets in the ab plane.

Experimental

Di-3-pyridyl ketone was prepared following the literature procedure of Chen & Mak (2005). Copper(II) perchlorate (37 mg, 0.1 mmol) was heated with di-3-pyridyl ketone (18 mg, 0.1 mmol) in acetonitrile (5 ml) at 373 K for 24 h. After cooling to room temperature, the precipitate which had formed was filtrated off. Crystals of the title salt was deposited by slow evaporation of the filtrate, which can be viewed as the product of the perchloric acid from the copper(II) perchlorate and di-3-pyridyl ketone (yield 11.5 mg, 30% based on di-3-pyridyl ketone).

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The atom-numbering scheme of the title salt; some H atoms have been omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) -x + 1, -y, z.]

Crystal data

C11H10N2O2+·2ClO4 Dx = 1.760 Mg m3
Mr = 385.11 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212 Cell parameters from 256 reflections
a = 8.5315 (3) Å θ = 2.3–26.2°
b = 15.1772 (6) Å µ = 0.50 mm1
c = 5.6107 (2) Å T = 296 K
V = 726.50 (5) Å3 Block, colorless
Z = 2 0.40 × 0.30 × 0.20 mm
F(000) = 392

Data collection

Bruker APEXII CCD area-detector diffractometer 1285 independent reflections
Radiation source: fine-focus sealed tube 1235 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.835, Tmax = 0.905 k = −18→16
6343 measured reflections l = −6→6

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.4015P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.34 e Å3
1285 reflections Δρmin = −0.21 e Å3
111 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.019 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 503 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.10 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1257 (3) 0.13417 (17) 0.4051 (5) 0.0416 (6)
H1 0.0408 0.1642 0.3402 0.050*
C2 0.1807 (3) 0.05924 (17) 0.2988 (4) 0.0372 (6)
H2 0.1340 0.0381 0.1604 0.045*
C3 0.3062 (3) 0.01520 (14) 0.3985 (4) 0.0317 (5)
H3 0.3449 −0.0357 0.3274 0.038*
C4 0.3745 (3) 0.04756 (14) 0.6063 (4) 0.0287 (5)
C5 0.3158 (3) 0.12400 (15) 0.7048 (4) 0.0334 (5)
H5 0.3609 0.1474 0.8419 0.040*
C6 0.5000 0.0000 0.7390 (6) 0.0308 (7)
N1 0.1948 (2) 0.16399 (13) 0.6032 (4) 0.0386 (5)
H7 0.1591 0.2113 0.6677 0.046*
O1 0.5000 0.0000 0.9548 (4) 0.0431 (6)
Cl1 0.30796 (6) 0.32979 (4) 1.13244 (10) 0.03518 (19)
O2 0.2552 (3) 0.31908 (15) 0.8930 (4) 0.0720 (7)
O3 0.1779 (3) 0.33349 (15) 1.2909 (4) 0.0647 (6)
O4 0.4064 (2) 0.25628 (13) 1.1946 (4) 0.0539 (6)
O5 0.3940 (3) 0.41004 (13) 1.1460 (5) 0.0622 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0318 (12) 0.0470 (14) 0.0461 (16) 0.0021 (11) −0.0001 (12) 0.0095 (13)
C2 0.0350 (13) 0.0444 (14) 0.0323 (12) −0.0082 (12) −0.0038 (11) 0.0022 (10)
C3 0.0339 (11) 0.0321 (12) 0.0293 (11) −0.0041 (10) 0.0037 (12) −0.0010 (10)
C4 0.0293 (11) 0.0299 (11) 0.0269 (11) −0.0019 (9) 0.0043 (11) 0.0025 (10)
C5 0.0348 (12) 0.0336 (12) 0.0319 (12) −0.0013 (11) 0.0021 (11) −0.0022 (9)
C6 0.0346 (18) 0.0289 (17) 0.0288 (18) −0.0017 (15) 0.000 0.000
N1 0.0378 (10) 0.0327 (10) 0.0452 (12) 0.0081 (10) 0.0046 (10) −0.0007 (10)
O1 0.0499 (15) 0.0537 (16) 0.0259 (13) 0.0073 (14) 0.000 0.000
Cl1 0.0335 (3) 0.0328 (3) 0.0393 (3) −0.0005 (2) 0.0001 (3) −0.0034 (3)
O2 0.0990 (17) 0.0660 (14) 0.0511 (12) 0.0026 (13) −0.0214 (12) −0.0129 (12)
O3 0.0620 (13) 0.0551 (12) 0.0770 (15) 0.0139 (12) 0.0314 (11) 0.0109 (12)
O4 0.0398 (10) 0.0402 (10) 0.0817 (16) 0.0070 (8) −0.0062 (10) −0.0008 (10)
O5 0.0604 (12) 0.0403 (11) 0.0858 (16) −0.0138 (9) −0.0075 (14) 0.0029 (12)

Geometric parameters (Å, º)

C1—N1 1.337 (3) C5—N1 1.327 (3)
C1—C2 1.368 (4) C5—H5 0.9300
C1—H1 0.9300 C6—O1 1.210 (4)
C2—C3 1.381 (4) C6—C4i 1.491 (3)
C2—H2 0.9300 N1—H7 0.8600
C3—C4 1.393 (3) Cl1—O3 1.423 (2)
C3—H3 0.9300 Cl1—O5 1.4242 (19)
C4—C5 1.379 (3) Cl1—O2 1.426 (2)
C4—C6 1.491 (3) Cl1—O4 1.439 (2)
N1—C1—C2 119.5 (2) C4—C5—H5 120.2
N1—C1—H1 120.2 O1—C6—C4 119.97 (14)
C2—C1—H1 120.2 O1—C6—C4i 119.97 (14)
C1—C2—C3 119.5 (2) C4—C6—C4i 120.1 (3)
C1—C2—H2 120.3 C5—N1—C1 123.1 (2)
C3—C2—H2 120.3 C5—N1—H7 118.5
C2—C3—C4 119.5 (2) C1—N1—H7 118.5
C2—C3—H3 120.2 O3—Cl1—O5 109.56 (14)
C4—C3—H3 120.2 O3—Cl1—O2 110.31 (16)
C5—C4—C3 118.7 (2) O5—Cl1—O2 108.08 (15)
C5—C4—C6 117.9 (2) O3—Cl1—O4 109.53 (13)
C3—C4—C6 123.2 (2) O5—Cl1—O4 110.44 (12)
N1—C5—C4 119.7 (2) O2—Cl1—O4 108.90 (14)
N1—C5—H5 120.2
N1—C1—C2—C3 0.4 (4) C5—C4—C6—O1 34.0 (2)
C1—C2—C3—C4 0.2 (3) C3—C4—C6—O1 −141.03 (17)
C2—C3—C4—C5 −1.0 (3) C5—C4—C6—C4i −146.0 (2)
C2—C3—C4—C6 174.0 (2) C3—C4—C6—C4i 38.97 (17)
C3—C4—C5—N1 1.2 (3) C4—C5—N1—C1 −0.6 (4)
C6—C4—C5—N1 −174.1 (2) C2—C1—N1—C5 −0.2 (4)

Symmetry code: (i) −x+1, −y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H7···O2 0.86 2.22 2.907 (3) 136
N1ii—H7ii···O4 0.86 2.34 2.967 (2) 130

Symmetry code: (ii) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5923).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.
  3. Chen, X.-D., Wan, C.-Q., Sung, H. H.-Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J 15, 6518–6528. [DOI] [PubMed]
  4. Crook, K. E. & McElvain, S. M. (1930). J. Am. Chem. Soc. 52, 4006–4011.
  5. Favaro, G., Romani, A. & Poggi, G. (1990). Z. Phys. Chem 168, 55–63.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022817/bt5923sup1.cif

e-68-o1896-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022817/bt5923Isup2.hkl

e-68-o1896-Isup2.hkl (63.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022817/bt5923Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES