Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1902. doi: 10.1107/S1600536812023112

N′-(3,4-Dichloro­benzyl­idene)-5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazole-4-carbohydrazide

Hoong-Kun Fun a,*,, Suhana Arshad a, Nithinchandra b, Balakrishna Kalluraya b, J H S Vidyashree b
PMCID: PMC3379459  PMID: 22719657

Abstract

In the title compound, C17H12Cl2N6O3, the 1H-1,2,3-triazole ring [maximum deviation = 0.003 (1) Å] forms dihedral angles of 34.08 (6) and 28.38 (6)°, respectively, with the nitro- and dichloro-substituted benzene rings. The dihedral angle between the benzene rings is 6.68 (5)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the a axis.

Related literature  

For aryl hydrazones, see: Sridhar & Perumal (2003); Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For related structures, see: Fun et al. (2011); Wang et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1902-scheme1.jpg

Experimental  

Crystal data  

  • C17H12Cl2N6O3

  • M r = 419.23

  • Monoclinic, Inline graphic

  • a = 6.6309 (3) Å

  • b = 22.7059 (10) Å

  • c = 13.3019 (5) Å

  • β = 119.559 (2)°

  • V = 1742.08 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.43 × 0.15 × 0.08 mm

Data collection  

  • Bruker SMART APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.844, T max = 0.967

  • 38004 measured reflections

  • 6085 independent reflections

  • 5280 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.04

  • 6085 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023112/hb6804sup1.cif

e-68-o1902-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023112/hb6804Isup2.hkl

e-68-o1902-Isup2.hkl (297.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023112/hb6804Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3i 0.93 2.41 3.2649 (17) 153
C12—H12A⋯O3i 0.93 2.59 3.4076 (15) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. BK is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

supplementary crystallographic information

Comment

Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Hydrazones possessing an azomethine —NHN═CH— proton constitute an important class of compound for new drug development. Hydrazones have been demonstrated to possess anti-microbial, anti-convulsant, analgesic, anti-inflammatory, anti-platelet, anti-tubercular, anti-cancer and anti-tumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). Prompted by these observations, the title compound was synthesized and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. The 1H-1,2,3-triazole ring [N2–N4/C7/C8; maximum deviation of 0.003 (1) Å at atom N3] forms dihedral angles of 34.08 (6) and 28.38 (6)°, respectively with the nitro-substituted and dichloro-substituted phenyl rings (C1–C6 and C11–C16). The dihedral angle between the nitro-substituted (C1–C6) and dichloro-substituted (C11–C16) phenyl rings is 6.68 (5)°. Bond lengths and angles are within normal ranges and comparable to the related structures (Fun et al., 2011; Wang et al., 2010).

The crystal packing is shown in Fig. 2. The molecules are linked via intermolecular C10—H10A···O3 and C12—H12A···O3 hydrogen bonds (Table 1) into one-dimensional chain parallel to a-axis.

Experimental

The title compound was obtained by refluxing a mixture of 5-methyl-1- (4-nitrophenyl)-1H-1,2,3-triazole-4-carbohydrazide (0.01 mol), 3,4-dichlorobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Colourless plates were obtained by slow evaporation of an ethanol-N,N- dimethylformamide (DMF) (3:1) solution.

Refinement

The N-bound H atom was located from the difference map and refined freely [N–H = 0.863 (19) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the c axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C17H12Cl2N6O3 F(000) = 856
Mr = 419.23 Dx = 1.598 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9957 reflections
a = 6.6309 (3) Å θ = 2.5–32.1°
b = 22.7059 (10) Å µ = 0.41 mm1
c = 13.3019 (5) Å T = 100 K
β = 119.559 (2)° Plate, colourless
V = 1742.08 (13) Å3 0.43 × 0.15 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX DUO CCD diffractometer 6085 independent reflections
Radiation source: fine-focus sealed tube 5280 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 32.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.844, Tmax = 0.967 k = −33→33
38004 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.9914P] where P = (Fo2 + 2Fc2)/3
6085 reflections (Δ/σ)max = 0.001
258 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.56021 (5) 0.165386 (13) 0.28246 (3) 0.02116 (7)
Cl2 −0.03571 (5) 0.156467 (14) 0.34211 (3) 0.02223 (8)
O1 1.5942 (2) −0.28578 (5) 1.52152 (10) 0.0388 (3)
O2 1.84421 (19) −0.26840 (5) 1.46501 (9) 0.0319 (2)
O3 0.78124 (15) −0.02047 (4) 0.78857 (7) 0.01839 (17)
N1 1.6545 (2) −0.26107 (5) 1.45880 (10) 0.0250 (2)
N2 1.01583 (16) −0.11155 (4) 1.10939 (8) 0.01214 (16)
N3 0.83699 (17) −0.09041 (4) 1.12221 (8) 0.01438 (17)
N4 0.70655 (17) −0.05895 (4) 1.03092 (8) 0.01456 (17)
N5 0.45947 (17) −0.01568 (4) 0.81069 (8) 0.01497 (18)
N6 0.32662 (17) 0.01542 (4) 0.71002 (8) 0.01402 (17)
C1 1.4138 (2) −0.14706 (5) 1.22695 (10) 0.0166 (2)
H1A 1.4642 −0.1214 1.1894 0.020*
C2 1.5691 (2) −0.18447 (5) 1.31329 (10) 0.0188 (2)
H2A 1.7244 −0.1852 1.3327 0.023*
C3 1.4894 (2) −0.22062 (5) 1.36985 (10) 0.0183 (2)
C4 1.2597 (2) −0.22145 (5) 1.34402 (10) 0.0196 (2)
H4A 1.2119 −0.2453 1.3851 0.024*
C5 1.1028 (2) −0.18563 (5) 1.25507 (10) 0.0165 (2)
H5A 0.9466 −0.1862 1.2339 0.020*
C6 1.18123 (19) −0.14880 (5) 1.19790 (9) 0.01316 (19)
C7 0.99791 (19) −0.09356 (5) 1.00752 (9) 0.01230 (18)
C8 0.79878 (19) −0.05976 (5) 0.95886 (9) 0.01275 (18)
C9 0.68418 (19) −0.02983 (5) 0.84506 (9) 0.01328 (19)
C10 0.1116 (2) 0.01900 (5) 0.68224 (9) 0.01384 (19)
H10A 0.0589 −0.0010 0.7258 0.017*
C11 −0.05113 (19) 0.05422 (5) 0.58286 (9) 0.01318 (18)
C12 −0.2838 (2) 0.05721 (5) 0.55521 (10) 0.0160 (2)
H12A −0.3340 0.0366 0.5993 0.019*
C13 −0.4402 (2) 0.09107 (5) 0.46155 (10) 0.0179 (2)
H13A −0.5953 0.0925 0.4423 0.021*
C14 −0.3645 (2) 0.12262 (5) 0.39687 (10) 0.0152 (2)
C15 −0.1323 (2) 0.11926 (5) 0.42388 (9) 0.01465 (19)
C16 0.0234 (2) 0.08516 (5) 0.51611 (9) 0.01451 (19)
H16A 0.1774 0.0828 0.5336 0.017*
C17 1.1550 (2) −0.11109 (6) 0.96271 (10) 0.0177 (2)
H17A 1.0738 −0.1081 0.8799 0.027*
H17B 1.2053 −0.1510 0.9850 0.027*
H17C 1.2874 −0.0855 0.9942 0.027*
H1N5 0.406 (3) −0.0207 (8) 0.8574 (16) 0.027 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01639 (13) 0.02378 (14) 0.02034 (14) 0.00532 (10) 0.00678 (11) 0.00923 (10)
Cl2 0.02019 (14) 0.02874 (15) 0.02075 (14) 0.00390 (11) 0.01239 (12) 0.01002 (10)
O1 0.0315 (6) 0.0358 (6) 0.0322 (6) 0.0003 (5) 0.0026 (5) 0.0195 (5)
O2 0.0246 (5) 0.0302 (5) 0.0272 (5) 0.0129 (4) 0.0023 (4) 0.0007 (4)
O3 0.0149 (4) 0.0252 (4) 0.0170 (4) 0.0007 (3) 0.0093 (3) 0.0048 (3)
N1 0.0232 (5) 0.0183 (5) 0.0197 (5) 0.0029 (4) −0.0001 (4) 0.0014 (4)
N2 0.0103 (4) 0.0142 (4) 0.0116 (4) 0.0010 (3) 0.0051 (3) 0.0001 (3)
N3 0.0127 (4) 0.0173 (4) 0.0140 (4) 0.0033 (3) 0.0072 (3) 0.0011 (3)
N4 0.0131 (4) 0.0179 (4) 0.0131 (4) 0.0028 (3) 0.0067 (3) 0.0019 (3)
N5 0.0131 (4) 0.0208 (4) 0.0111 (4) 0.0039 (3) 0.0061 (3) 0.0044 (3)
N6 0.0137 (4) 0.0161 (4) 0.0103 (4) 0.0028 (3) 0.0045 (3) 0.0014 (3)
C1 0.0128 (5) 0.0183 (5) 0.0160 (5) 0.0002 (4) 0.0049 (4) 0.0005 (4)
C2 0.0126 (5) 0.0202 (5) 0.0182 (5) 0.0026 (4) 0.0035 (4) −0.0007 (4)
C3 0.0175 (5) 0.0150 (5) 0.0135 (5) 0.0033 (4) 0.0007 (4) 0.0005 (4)
C4 0.0206 (6) 0.0176 (5) 0.0157 (5) −0.0011 (4) 0.0052 (4) 0.0031 (4)
C5 0.0134 (5) 0.0186 (5) 0.0149 (5) −0.0007 (4) 0.0051 (4) 0.0016 (4)
C6 0.0124 (5) 0.0128 (4) 0.0113 (4) 0.0010 (3) 0.0035 (4) −0.0004 (3)
C7 0.0106 (4) 0.0142 (4) 0.0111 (4) −0.0003 (3) 0.0047 (4) −0.0001 (3)
C8 0.0105 (4) 0.0152 (4) 0.0122 (4) 0.0009 (3) 0.0053 (4) 0.0006 (3)
C9 0.0118 (5) 0.0149 (4) 0.0121 (4) 0.0004 (4) 0.0051 (4) 0.0005 (3)
C10 0.0143 (5) 0.0147 (4) 0.0120 (4) 0.0010 (4) 0.0062 (4) 0.0001 (3)
C11 0.0127 (5) 0.0142 (4) 0.0112 (4) 0.0010 (4) 0.0048 (4) −0.0003 (3)
C12 0.0134 (5) 0.0183 (5) 0.0153 (5) 0.0006 (4) 0.0062 (4) 0.0029 (4)
C13 0.0121 (5) 0.0217 (5) 0.0189 (5) 0.0016 (4) 0.0070 (4) 0.0046 (4)
C14 0.0141 (5) 0.0159 (4) 0.0140 (4) 0.0020 (4) 0.0057 (4) 0.0020 (4)
C15 0.0162 (5) 0.0153 (4) 0.0136 (4) 0.0005 (4) 0.0083 (4) 0.0012 (3)
C16 0.0137 (5) 0.0167 (4) 0.0133 (4) 0.0013 (4) 0.0067 (4) 0.0003 (3)
C17 0.0139 (5) 0.0250 (5) 0.0169 (5) 0.0030 (4) 0.0096 (4) 0.0012 (4)

Geometric parameters (Å, º)

Cl1—C14 1.7305 (11) C4—C5 1.3889 (16)
Cl2—C15 1.7304 (11) C4—H4A 0.9300
O1—N1 1.2248 (17) C5—C6 1.3920 (16)
O2—N1 1.2303 (17) C5—H5A 0.9300
O3—C9 1.2252 (14) C7—C8 1.3813 (15)
N1—C3 1.4711 (15) C7—C17 1.4874 (16)
N2—C7 1.3631 (14) C8—C9 1.4818 (15)
N2—N3 1.3658 (13) C10—C11 1.4642 (15)
N2—C6 1.4249 (14) C10—H10A 0.9300
N3—N4 1.3024 (13) C11—C16 1.3998 (15)
N4—C8 1.3681 (14) C11—C12 1.4000 (16)
N5—C9 1.3640 (14) C12—C13 1.3941 (16)
N5—N6 1.3799 (13) C12—H12A 0.9300
N5—H1N5 0.863 (19) C13—C14 1.3897 (16)
N6—C10 1.2871 (15) C13—H13A 0.9300
C1—C2 1.3906 (16) C14—C15 1.4001 (16)
C1—C6 1.3935 (16) C15—C16 1.3858 (15)
C1—H1A 0.9300 C16—H16A 0.9300
C2—C3 1.3824 (18) C17—H17A 0.9600
C2—H2A 0.9300 C17—H17B 0.9600
C3—C4 1.3869 (18) C17—H17C 0.9600
O1—N1—O2 123.98 (12) N4—C8—C7 109.48 (9)
O1—N1—C3 118.05 (12) N4—C8—C9 121.89 (10)
O2—N1—C3 117.97 (12) C7—C8—C9 128.57 (10)
C7—N2—N3 111.32 (9) O3—C9—N5 124.82 (10)
C7—N2—C6 130.79 (9) O3—C9—C8 123.11 (10)
N3—N2—C6 117.85 (9) N5—C9—C8 112.05 (9)
N4—N3—N2 107.12 (9) N6—C10—C11 120.81 (10)
N3—N4—C8 108.97 (9) N6—C10—H10A 119.6
C9—N5—N6 120.97 (9) C11—C10—H10A 119.6
C9—N5—H1N5 120.0 (12) C16—C11—C12 119.81 (10)
N6—N5—H1N5 118.2 (12) C16—C11—C10 120.89 (10)
C10—N6—N5 113.41 (10) C12—C11—C10 119.30 (10)
C2—C1—C6 118.62 (11) C13—C12—C11 119.94 (11)
C2—C1—H1A 120.7 C13—C12—H12A 120.0
C6—C1—H1A 120.7 C11—C12—H12A 120.0
C3—C2—C1 119.09 (11) C14—C13—C12 120.06 (11)
C3—C2—H2A 120.5 C14—C13—H13A 120.0
C1—C2—H2A 120.5 C12—C13—H13A 120.0
C2—C3—C4 122.77 (11) C13—C14—C15 120.02 (10)
C2—C3—N1 118.42 (11) C13—C14—Cl1 119.38 (9)
C4—C3—N1 118.78 (11) C15—C14—Cl1 120.60 (9)
C3—C4—C5 118.19 (11) C16—C15—C14 120.16 (10)
C3—C4—H4A 120.9 C16—C15—Cl2 118.96 (9)
C5—C4—H4A 120.9 C14—C15—Cl2 120.88 (8)
C4—C5—C6 119.53 (11) C15—C16—C11 120.00 (10)
C4—C5—H5A 120.2 C15—C16—H16A 120.0
C6—C5—H5A 120.2 C11—C16—H16A 120.0
C5—C6—C1 121.73 (10) C7—C17—H17A 109.5
C5—C6—N2 117.74 (10) C7—C17—H17B 109.5
C1—C6—N2 120.52 (10) H17A—C17—H17B 109.5
N2—C7—C8 103.11 (9) C7—C17—H17C 109.5
N2—C7—C17 125.69 (10) H17A—C17—H17C 109.5
C8—C7—C17 131.11 (10) H17B—C17—H17C 109.5
C7—N2—N3—N4 −0.47 (12) N3—N4—C8—C9 177.51 (10)
C6—N2—N3—N4 −178.56 (9) N2—C7—C8—N4 −0.28 (12)
N2—N3—N4—C8 0.28 (12) C17—C7—C8—N4 176.31 (11)
C9—N5—N6—C10 171.91 (10) N2—C7—C8—C9 −177.56 (10)
C6—C1—C2—C3 −2.09 (17) C17—C7—C8—C9 −1.0 (2)
C1—C2—C3—C4 0.21 (18) N6—N5—C9—O3 −5.22 (17)
C1—C2—C3—N1 178.39 (11) N6—N5—C9—C8 176.32 (9)
O1—N1—C3—C2 168.22 (12) N4—C8—C9—O3 166.12 (11)
O2—N1—C3—C2 −12.38 (17) C7—C8—C9—O3 −16.90 (18)
O1—N1—C3—C4 −13.52 (18) N4—C8—C9—N5 −15.39 (15)
O2—N1—C3—C4 165.87 (12) C7—C8—C9—N5 161.59 (11)
C2—C3—C4—C5 2.01 (18) N5—N6—C10—C11 175.27 (9)
N1—C3—C4—C5 −176.16 (11) N6—C10—C11—C16 −0.42 (16)
C3—C4—C5—C6 −2.29 (18) N6—C10—C11—C12 −179.89 (10)
C4—C5—C6—C1 0.43 (17) C16—C11—C12—C13 −0.14 (17)
C4—C5—C6—N2 −178.26 (10) C10—C11—C12—C13 179.34 (10)
C2—C1—C6—C5 1.80 (17) C11—C12—C13—C14 −1.09 (18)
C2—C1—C6—N2 −179.55 (10) C12—C13—C14—C15 1.62 (18)
C7—N2—C6—C5 −144.57 (12) C12—C13—C14—Cl1 −178.90 (9)
N3—N2—C6—C5 33.08 (14) C13—C14—C15—C16 −0.91 (17)
C7—N2—C6—C1 36.73 (17) Cl1—C14—C15—C16 179.61 (9)
N3—N2—C6—C1 −145.62 (11) C13—C14—C15—Cl2 178.15 (9)
N3—N2—C7—C8 0.46 (12) Cl1—C14—C15—Cl2 −1.32 (14)
C6—N2—C7—C8 178.23 (10) C14—C15—C16—C11 −0.32 (17)
N3—N2—C7—C17 −176.38 (10) Cl2—C15—C16—C11 −179.41 (8)
C6—N2—C7—C17 1.40 (18) C12—C11—C16—C15 0.84 (16)
N3—N4—C8—C7 0.01 (13) C10—C11—C16—C15 −178.62 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O3i 0.93 2.41 3.2649 (17) 153
C12—H12A···O3i 0.93 2.59 3.4076 (15) 147

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6804).

References

  1. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. [DOI] [PubMed]
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o2416. [DOI] [PMC free article] [PubMed]
  5. Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.
  9. Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786. [DOI] [PubMed]
  10. Wang, Y.-G., Huang, G.-B. & Zhu, B.-C. (2010). Acta Cryst. E66, o2267–o2268. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023112/hb6804sup1.cif

e-68-o1902-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023112/hb6804Isup2.hkl

e-68-o1902-Isup2.hkl (297.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023112/hb6804Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES