Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1905. doi: 10.1107/S1600536812023367

2,2′-[(E,E)-cis-(Cyclo­hexane-1,4-di­yl)bis­(nitrilo­methanylyl­idene)]diphenol

Shaaban K Mohamed a, Mehmet Akkurt b,*, Muhammad N Tahir c, Antar A Abdelhamid a
PMCID: PMC3379462  PMID: 22719660

Abstract

In the title compound, C20H22N2O2, the asymmetric unit contains two independent half-mol­ecules, which are both completed by crystallographic inversion symmetry. The cyclo­hexane rings of both mol­ecules adopt chair conformations; the N atoms are in equatorial orientations in one mol­ecule and in axial orientations in the other. Both mol­ecules feature two intra­molecular O—H⋯N hydrogen bonds, which generate S(6) rings.

Related literature  

For background to Schiff bases as ligands, see: Li & Zhang (2004).graphic file with name e-68-o1905-scheme1.jpg

Experimental  

Crystal data  

  • C20H22N2O2

  • M r = 322.40

  • Monoclinic, Inline graphic

  • a = 16.2979 (11) Å

  • b = 6.1103 (4) Å

  • c = 18.2336 (12) Å

  • β = 104.975 (4)°

  • V = 1754.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.975, T max = 0.980

  • 12904 measured reflections

  • 3428 independent reflections

  • 1641 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.140

  • S = 1.01

  • 3428 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023367/hb6813sup1.cif

e-68-o1905-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023367/hb6813Isup2.hkl

e-68-o1905-Isup2.hkl (168.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.579 (2) 148
O2—H2A⋯N2 0.82 1.86 2.593 (3) 148

Acknowledgments

This project was sponsored by the General Association of Scholarships in Egypt. The University of Sargodha is gratefully acknowledged for The X-ray difraction measurements and the data collection.

supplementary crystallographic information

Comment

Schiff base compounds have been reported as excelent substrates in the development of coordination chemistry (e.g. Li & Zhang, 2004), In this study we report the synthesis and crystal structure of the title compound (I).

As shown in Fig. 1, there are two independent half molecules A (with C1) and B (with C11) in the asymmetric unit of the title compound. They are centrosymmetric and the centres of symmetry are lied on the centroids of their cyclohexane rings. The cyclohexane rings of them adopt chair conformations Molecular conformation of the title compound is stabilized by intramolecular O—H···N hydrogen bonds, generating an S(6) ring motif (Table 1, Fig. 2).

Experimental

The title compound arose as a bi-product from heating a reaction mixture of 114 mg (1 mmol) cyclohexane-1,4-diamine, 112 mg (1 mmol) cyclohexane-1,3-dione and 122 mg (1 mmol) salicylaldehyde in 50 ml e thanol under reflux for 6 h. The reaction mixture was concentrated under vacuum then left to cool at ambient temperature. The obtained solid was collected by Buckner funnel, washed with water then ethanol, dried in desiccator and crystallized from ethanol (m.p. 451 K). Yellow prisms were grown from ethanol solution by slow evaporation over two days.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(O) for OH groups and Uiso(H) = 1.2Ueq(C) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewing along the b axis.

Crystal data

C20H22N2O2 F(000) = 688
Mr = 322.40 Dx = 1.221 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 355 reflections
a = 16.2979 (11) Å θ = 3.5–18°
b = 6.1103 (4) Å µ = 0.08 mm1
c = 18.2336 (12) Å T = 296 K
β = 104.975 (4)° Prism, light yellow
V = 1754.1 (2) Å3 0.32 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3428 independent reflections
Radiation source: fine-focus sealed tube 1641 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 0.81 pixels mm-1 θmax = 26.0°, θmin = 2.3°
ω scans h = −20→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −7→7
Tmin = 0.975, Tmax = 0.980 l = −22→22
12904 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1881P] where P = (Fo2 + 2Fc2)/3
3428 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09064 (11) −0.2099 (2) 0.21955 (9) 0.0798 (7)
N1 0.07675 (13) 0.0983 (3) 0.12044 (10) 0.0689 (8)
C1 0.13461 (14) −0.0662 (4) 0.27110 (13) 0.0590 (9)
C2 0.16439 (15) −0.1325 (4) 0.34525 (13) 0.0737 (10)
C3 0.20939 (17) 0.0070 (6) 0.39911 (15) 0.0845 (11)
C4 0.22627 (17) 0.2171 (6) 0.37967 (16) 0.0878 (14)
C5 0.19641 (15) 0.2847 (4) 0.30586 (15) 0.0732 (10)
C6 0.15061 (13) 0.1469 (4) 0.25003 (12) 0.0540 (8)
C7 0.11732 (14) 0.2225 (4) 0.17308 (13) 0.0629 (9)
C8 0.0412 (2) 0.1898 (4) 0.04433 (14) 0.0798 (12)
C9 0.07984 (17) 0.0747 (5) −0.01193 (15) 0.0893 (13)
C10 −0.05416 (19) 0.1620 (5) 0.02264 (14) 0.0895 (13)
O2 0.24999 (12) −0.0079 (3) 0.60105 (10) 0.0906 (8)
N2 0.15493 (13) 0.3363 (3) 0.59279 (11) 0.0689 (8)
C11 0.30811 (17) 0.0985 (4) 0.65534 (13) 0.0658 (10)
C12 0.3858 (2) −0.0030 (4) 0.68695 (16) 0.0789 (11)
C13 0.44577 (18) 0.1016 (5) 0.74179 (17) 0.0835 (12)
C14 0.43165 (18) 0.3068 (5) 0.76653 (15) 0.0827 (12)
C15 0.35547 (17) 0.4075 (4) 0.73567 (14) 0.0726 (10)
C16 0.29237 (15) 0.3078 (4) 0.67939 (13) 0.0594 (9)
C17 0.21310 (16) 0.4199 (4) 0.64521 (13) 0.0639 (9)
C18 0.07848 (17) 0.4641 (4) 0.56020 (12) 0.0707 (10)
C19 0.08057 (16) 0.5442 (5) 0.48189 (14) 0.0877 (11)
C20 0.00025 (17) 0.3308 (5) 0.55562 (15) 0.0893 (11)
H1 0.07470 −0.14950 0.17810 0.0960*
H2 0.15370 −0.27440 0.35880 0.0880*
H3 0.22880 −0.03980 0.44920 0.1020*
H4 0.25760 0.31200 0.41620 0.1050*
H5 0.20730 0.42720 0.29300 0.0880*
H7 0.12590 0.36770 0.16170 0.0760*
H8 0.05480 0.34610 0.04490 0.0960*
H9A 0.06250 0.14910 −0.06050 0.1070*
H9B 0.14120 0.08380 0.00550 0.1070*
H10A −0.07710 0.22480 0.06200 0.1070*
H10B −0.07820 0.24110 −0.02410 0.1070*
H2A 0.20730 0.06790 0.58720 0.1090*
H12 0.39670 −0.14170 0.67070 0.0950*
H13 0.49730 0.03250 0.76290 0.1000*
H14 0.47330 0.37660 0.80380 0.0990*
H15 0.34570 0.54600 0.75280 0.0870*
H17 0.20470 0.55910 0.66260 0.0770*
H18 0.07770 0.59130 0.59280 0.0850*
H19A 0.08650 0.42010 0.45050 0.1050*
H19B 0.12940 0.63890 0.48620 0.1050*
H20A −0.00150 0.28800 0.60640 0.1070*
H20B 0.00280 0.19850 0.52690 0.1070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1064 (14) 0.0639 (10) 0.0648 (11) −0.0200 (10) 0.0146 (10) 0.0018 (8)
N1 0.0927 (15) 0.0592 (12) 0.0533 (12) −0.0029 (11) 0.0160 (10) 0.0030 (10)
C1 0.0618 (15) 0.0655 (16) 0.0526 (14) −0.0007 (13) 0.0202 (11) −0.0056 (12)
C2 0.0842 (19) 0.0826 (18) 0.0583 (16) 0.0068 (15) 0.0257 (13) 0.0046 (14)
C3 0.084 (2) 0.114 (2) 0.0565 (17) 0.0167 (18) 0.0201 (14) −0.0041 (17)
C4 0.0716 (19) 0.114 (3) 0.073 (2) −0.0034 (17) 0.0099 (15) −0.0310 (18)
C5 0.0669 (17) 0.0738 (17) 0.0834 (19) −0.0097 (13) 0.0274 (14) −0.0203 (15)
C6 0.0537 (14) 0.0567 (14) 0.0558 (14) −0.0014 (11) 0.0217 (11) −0.0057 (12)
C7 0.0736 (17) 0.0543 (14) 0.0672 (16) −0.0008 (12) 0.0296 (13) 0.0013 (13)
C8 0.120 (3) 0.0562 (15) 0.0589 (16) 0.0001 (16) 0.0152 (16) 0.0100 (13)
C9 0.083 (2) 0.120 (3) 0.0661 (18) −0.0034 (18) 0.0212 (14) 0.0239 (17)
C10 0.107 (3) 0.100 (2) 0.0625 (17) 0.0366 (19) 0.0238 (16) −0.0014 (15)
O2 0.1192 (16) 0.0754 (12) 0.0774 (13) 0.0202 (11) 0.0259 (11) −0.0102 (10)
N2 0.0781 (15) 0.0755 (14) 0.0541 (12) 0.0147 (12) 0.0189 (10) 0.0012 (11)
C11 0.085 (2) 0.0656 (17) 0.0548 (15) 0.0085 (15) 0.0327 (14) 0.0045 (13)
C12 0.101 (2) 0.0716 (18) 0.0787 (19) 0.0263 (18) 0.0497 (17) 0.0179 (15)
C13 0.073 (2) 0.104 (2) 0.084 (2) 0.0205 (18) 0.0391 (17) 0.0301 (18)
C14 0.067 (2) 0.097 (2) 0.088 (2) −0.0028 (17) 0.0271 (15) 0.0135 (17)
C15 0.0768 (19) 0.0668 (16) 0.0809 (18) −0.0025 (15) 0.0324 (15) 0.0048 (14)
C16 0.0693 (17) 0.0588 (15) 0.0594 (15) 0.0058 (13) 0.0335 (13) 0.0077 (12)
C17 0.0772 (18) 0.0605 (15) 0.0622 (16) 0.0092 (14) 0.0328 (13) 0.0061 (13)
C18 0.0829 (19) 0.0775 (17) 0.0530 (15) 0.0188 (16) 0.0202 (12) 0.0007 (13)
C19 0.0816 (19) 0.109 (2) 0.0774 (19) 0.0142 (17) 0.0296 (14) 0.0299 (16)
C20 0.089 (2) 0.104 (2) 0.0797 (19) 0.0131 (19) 0.0304 (15) 0.0309 (16)

Geometric parameters (Å, º)

O1—C1 1.349 (3) C9—H9A 0.9700
O1—H1 0.8200 C9—H9B 0.9700
O2—C11 1.347 (3) C10—H10B 0.9700
O2—H2A 0.8200 C10—H10A 0.9700
N1—C7 1.267 (3) C11—C16 1.397 (3)
N1—C8 1.469 (3) C11—C12 1.394 (4)
N2—C18 1.460 (3) C12—C13 1.363 (4)
N2—C17 1.267 (3) C13—C14 1.372 (4)
C1—C6 1.401 (3) C14—C15 1.370 (4)
C1—C2 1.374 (3) C15—C16 1.392 (4)
C2—C3 1.363 (4) C16—C17 1.453 (4)
C3—C4 1.378 (5) C18—C20 1.497 (4)
C4—C5 1.371 (4) C18—C19 1.518 (3)
C5—C6 1.382 (3) C19—C20ii 1.523 (4)
C6—C7 1.443 (3) C12—H12 0.9300
C8—C10 1.511 (5) C13—H13 0.9300
C8—C9 1.509 (4) C14—H14 0.9300
C9—C10i 1.504 (4) C15—H15 0.9300
C2—H2 0.9300 C17—H17 0.9300
C3—H3 0.9300 C18—H18 0.9800
C4—H4 0.9300 C19—H19A 0.9700
C5—H5 0.9300 C19—H19B 0.9700
C7—H7 0.9300 C20—H20A 0.9700
C8—H8 0.9800 C20—H20B 0.9700
C1—O1—H1 109.00 H10A—C10—H10B 108.00
C11—O2—H2A 109.00 C8—C10—H10A 109.00
C7—N1—C8 119.3 (2) O2—C11—C12 118.7 (2)
C17—N2—C18 119.0 (2) C12—C11—C16 119.9 (2)
O1—C1—C2 118.9 (2) O2—C11—C16 121.4 (2)
C2—C1—C6 120.0 (2) C11—C12—C13 119.8 (2)
O1—C1—C6 121.1 (2) C12—C13—C14 121.4 (3)
C1—C2—C3 120.8 (2) C13—C14—C15 119.1 (3)
C2—C3—C4 120.2 (3) C14—C15—C16 121.7 (2)
C3—C4—C5 119.3 (3) C11—C16—C15 118.1 (2)
C4—C5—C6 121.8 (3) C11—C16—C17 120.8 (2)
C1—C6—C5 117.9 (2) C15—C16—C17 121.1 (2)
C1—C6—C7 120.9 (2) N2—C17—C16 122.9 (2)
C5—C6—C7 121.1 (2) N2—C18—C19 109.3 (2)
N1—C7—C6 122.4 (2) N2—C18—C20 110.9 (2)
N1—C8—C10 109.4 (2) C19—C18—C20 110.4 (2)
C9—C8—C10 110.6 (2) C18—C19—C20ii 110.9 (2)
N1—C8—C9 109.4 (2) C18—C20—C19ii 112.2 (2)
C8—C9—C10i 112.7 (2) C11—C12—H12 120.00
C8—C10—C9i 112.0 (2) C13—C12—H12 120.00
C1—C2—H2 120.00 C12—C13—H13 119.00
C3—C2—H2 120.00 C14—C13—H13 119.00
C4—C3—H3 120.00 C13—C14—H14 120.00
C2—C3—H3 120.00 C15—C14—H14 120.00
C3—C4—H4 120.00 C14—C15—H15 119.00
C5—C4—H4 120.00 C16—C15—H15 119.00
C6—C5—H5 119.00 N2—C17—H17 119.00
C4—C5—H5 119.00 C16—C17—H17 119.00
C6—C7—H7 119.00 N2—C18—H18 109.00
N1—C7—H7 119.00 C19—C18—H18 109.00
C9—C8—H8 109.00 C20—C18—H18 109.00
C10—C8—H8 109.00 C18—C19—H19A 109.00
N1—C8—H8 109.00 C18—C19—H19B 109.00
C8—C9—H9B 109.00 H19A—C19—H19B 108.00
C8—C9—H9A 109.00 C20ii—C19—H19A 109.00
C10i—C9—H9B 109.00 C20ii—C19—H19B 109.00
H9A—C9—H9B 108.00 C18—C20—H20A 109.00
C10i—C9—H9A 109.00 C18—C20—H20B 109.00
C8—C10—H10B 109.00 H20A—C20—H20B 108.00
C9i—C10—H10A 109.00 C19ii—C20—H20A 109.00
C9i—C10—H10B 109.00 C19ii—C20—H20B 109.00
C8—N1—C7—C6 177.0 (2) N1—C8—C10—C9i −67.2 (3)
C7—N1—C8—C9 119.4 (3) C9—C8—C10—C9i 53.4 (3)
C7—N1—C8—C10 −119.3 (3) C8—C9—C10i—C8i 54.6 (3)
C18—N2—C17—C16 −178.1 (2) O2—C11—C12—C13 179.8 (3)
C17—N2—C18—C19 105.8 (3) C16—C11—C12—C13 0.7 (4)
C17—N2—C18—C20 −132.2 (2) O2—C11—C16—C15 −179.9 (2)
O1—C1—C2—C3 179.7 (2) O2—C11—C16—C17 −1.4 (4)
C6—C1—C2—C3 0.2 (4) C12—C11—C16—C15 −0.9 (4)
O1—C1—C6—C5 −179.7 (2) C12—C11—C16—C17 177.7 (2)
C2—C1—C6—C7 −177.7 (2) C11—C12—C13—C14 −0.4 (5)
O1—C1—C6—C7 2.8 (3) C12—C13—C14—C15 0.4 (4)
C2—C1—C6—C5 −0.2 (3) C13—C14—C15—C16 −0.6 (4)
C1—C2—C3—C4 −0.5 (4) C14—C15—C16—C11 0.8 (4)
C2—C3—C4—C5 0.8 (4) C14—C15—C16—C17 −177.7 (2)
C3—C4—C5—C6 −0.8 (4) C11—C16—C17—N2 0.0 (4)
C4—C5—C6—C1 0.5 (4) C15—C16—C17—N2 178.5 (2)
C4—C5—C6—C7 178.0 (2) N2—C18—C19—C20ii 177.3 (2)
C1—C6—C7—N1 −4.2 (4) C20—C18—C19—C20ii 55.0 (3)
C5—C6—C7—N1 178.4 (2) N2—C18—C20—C19ii −177.1 (2)
C10—C8—C9—C10i −53.8 (3) C19—C18—C20—C19ii −55.7 (3)
N1—C8—C9—C10i 66.8 (3) C18—C19—C20ii—C18ii −56.0 (3)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.579 (2) 148
O2—H2A···N2 0.82 1.86 2.593 (3) 148

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6813).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023367/hb6813sup1.cif

e-68-o1905-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023367/hb6813Isup2.hkl

e-68-o1905-Isup2.hkl (168.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES