Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1908. doi: 10.1107/S1600536812023410

2-({4-[4-(1H-Benzimidazol-2-yl)phen­yl]-1H-1,2,3-triazol-1-yl}meth­oxy)ethanol

Abdelaaziz Ouahrouch a, Moha Taourirte a, Hassan B Lazrek b, Jan W Bats c,*, Joachim W Engels c
PMCID: PMC3379465  PMID: 22719663

Abstract

In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, mol­ecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H⋯(N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H⋯O contacts, forming a three-dimensional network.

Related literature  

For the bioactivity of benzimidazoles, see: Tebbe et al. (1997); Andrzejewska et al. (2002); Navarrete-Vázquez et al. (2003); Terzioglu et al. (2004); Özden et al. (2005). For the bioactivity of 1,2,3-triazoles, see: Chen et al. (2000); Manfredini et al. (2000). For the synthetic methods, see: Huisgen (1963); Crisp & Flynn (1993); Wu et al. (2004); Navarrete-Vázquez et al. (2007); Krim et al. (2009).graphic file with name e-68-o1908-scheme1.jpg

Experimental  

Crystal data  

  • C18H17N5O2

  • M r = 335.37

  • Monoclinic, Inline graphic

  • a = 10.4449 (5) Å

  • b = 7.7754 (4) Å

  • c = 20.2119 (10) Å

  • β = 99.354 (1)°

  • V = 1619.65 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.40 × 0.32 × 0.11 mm

Data collection  

  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.953, T max = 0.990

  • 15768 measured reflections

  • 3295 independent reflections

  • 2562 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.102

  • S = 1.14

  • 3295 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023410/nc2282sup1.cif

e-68-o1908-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023410/nc2282Isup2.hkl

e-68-o1908-Isup2.hkl (161.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023410/nc2282Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.89 (2) 2.50 (2) 3.244 (2) 141.7 (17)
N1—H1A⋯N5i 0.89 (2) 2.21 (2) 3.088 (2) 170.4 (19)
O2—H2A⋯N2ii 0.92 (3) 1.85 (3) 2.761 (2) 171 (2)
C15—H15A⋯O2iii 0.95 2.54 3.271 (2) 134
C16—H16A⋯O2iii 0.99 2.54 3.258 (2) 129
C17—H17B⋯O1iv 0.99 2.35 3.279 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Benzimidazoles are important pharmacophores in modern drug discovery (Tebbe et al., 1997). They are present in various bioactive compounds, possessing, e.g. antiparasitic (Navarrete-Vázquez et al., 2003), antimicrobial (Özden et al., 2005), antihistaminic (Terzioglu et al., 2004) and antitumor (Andrzejewska et al., 2002) activities. In addition, 1,2,3-triazoles are potent antibacterial (Chen et al., 2000) and antiproliferative (Manfredini et al., 2000) agents. The most widely used method for their synthesis is the Huisgen 1,3-dipolar cycloaddition of alkynes with organic azides (Huisgen, 1963). Copper-catalyzed click chemistry, involving azides and terminal acetylenes, has enabled practical and efficient preparation of 1,4-disubstituted 1,2,3-triazoles, from a wide range of substrates with excellent selectivity (Wu et al., 2004). In connection to our previous studies on the synthesis of acyclonucleosides (Krim et al., 2009), we decided to explore the feasibility of the click chemistry for the synthesis of novel 1,2,3-triazoles containing a benzimidazole moiety coupled via a benzene ring. Thus the title compound was prepared and its crystal structure is reported herein.

A view of the molecular structure of the title compound is shown in Fig. 1. The molecule contains three planar parts: the benzimidazole, the benzene and the triazole groups. The angle between the benzene and benzimidazole planes is 19.8 (1)°, while the angle between the benzene and triazole planes is 16.7 (1)°. The (2-hydroxyethoxy)methyl group points away from the triazole plane [torsion angle N4—N3—C16—O1: 88.6 (2)°]. The C16—O1 bond has a gauche conformation, while the O1—C17 and the C17—C18 bonds have trans conformations.

The molecules of the title compound are connected by intermolecular O—H···N hydrogen bonds to form zigzag chains along the c axis direction (Fig.2, Table 1). Adjacent molecules in each chain are related by c-gilde plane symmetry. Neighboring chains are connected by intermolecular N—H···N hydrogen bonds between imidazole and triazole groups to form layers parallel to (1 0 0). The N—H···N hydrogen bond is bifurcated with both atoms N4 and N5 acting as acceptor atoms. There are two symmetry-related N—H···N bonds between each pair of molecules. The hydrogen bonded layers are connected along the a axis direction by additional intermolecular weak C—H···O contacts to form a three-dimensional framework.

Experimental

The title compound has been prepared in four steps starting from 4-[(trimethylsilyl)ethynyl]benzaldehyde. The starting material was reacted with benzimidazole in the presence of sodium metabisulfite using microwave irradiation (Navarrete-Vázquez et al., 2007). The resulting product was deprotected with tetrabutylammonium fluoride in tetrahydrofuran to 2-(4-ethynylphenyl)-1H-benzimidazole (Crisp & Flynn, 1993). Cycloaddition of the latter product with [(2-acetoxyethoxy)methyl]azide in the presence of CuI, followed by deprotection of the acetyl group (Krim et al., 2009), afforded the title compound in good yield. The crude product was purified by passing through a column packed with silica gel. Single crystals suitable for X-ray analysis were obtained by slow recrystallizion from ethanol. The melting point is approximately 502–504 K.

Refinement

The H atoms on C atoms were positioned geometrically and treated as riding: Cplanar—H=0.95 Å, Cmethylene—H=0.99 Å, Uiso(H)=1.2Ueq(parent C-atom). The H atoms on the N and O atoms were taken from a difference Fourier synthesis and were refined.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of an arbitrary radius.

Fig. 2.

Fig. 2.

A view of the hydrogen bonding network of the title compound. Displacement ellipsoids are drawn at the 50% probabilty level. Intermolecular hydrogen bonds are shown as dashed lines. The symmetry codes are: (i) 2 - x, 1 - y, 1 - z; (ii) x, 3/2 - y, 1/2 + z; (v) x, 3/2 - y, -1/2 + z.

Crystal data

C18H17N5O2 F(000) = 704
Mr = 335.37 Dx = 1.375 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8027 reflections
a = 10.4449 (5) Å θ = 3–24°
b = 7.7754 (4) Å µ = 0.09 mm1
c = 20.2119 (10) Å T = 170 K
β = 99.354 (1)° Block, yellow
V = 1619.65 (14) Å3 0.40 × 0.32 × 0.11 mm
Z = 4

Data collection

Siemens SMART 1K CCD diffractometer 3295 independent reflections
Radiation source: normal-focus sealed tube 2562 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
ω scans θmax = 26.8°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −13→13
Tmin = 0.953, Tmax = 0.990 k = −9→9
15768 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.023P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
3295 reflections Δρmax = 0.20 e Å3
235 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0056 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50237 (13) 0.39456 (17) 0.71767 (6) 0.0308 (3)
O2 0.67189 (14) 0.21899 (18) 0.87378 (7) 0.0335 (4)
N1 1.07016 (15) 0.9376 (2) 0.37941 (8) 0.0265 (4)
N2 0.91403 (15) 1.1341 (2) 0.37934 (8) 0.0277 (4)
N3 0.56182 (15) 0.3846 (2) 0.60950 (7) 0.0272 (4)
N4 0.65832 (16) 0.2730 (2) 0.60375 (8) 0.0350 (4)
N5 0.73569 (16) 0.3493 (2) 0.56742 (8) 0.0331 (4)
C1 0.95442 (18) 0.9778 (2) 0.39886 (9) 0.0252 (4)
C2 1.10804 (18) 1.0777 (2) 0.34516 (9) 0.0265 (4)
C3 1.21525 (18) 1.1085 (3) 0.31418 (10) 0.0317 (5)
H3A 1.2823 1.0256 0.3148 0.038*
C4 1.2198 (2) 1.2654 (3) 0.28242 (10) 0.0350 (5)
H4A 1.2918 1.2912 0.2608 0.042*
C5 1.12061 (19) 1.3873 (3) 0.28139 (10) 0.0343 (5)
H5A 1.1267 1.4936 0.2589 0.041*
C6 1.01424 (19) 1.3565 (3) 0.31228 (9) 0.0310 (5)
H6A 0.9471 1.4393 0.3112 0.037*
C7 1.00880 (17) 1.1996 (2) 0.34504 (9) 0.0257 (4)
C8 0.88408 (17) 0.8577 (2) 0.43576 (9) 0.0253 (4)
C9 0.91089 (18) 0.6817 (2) 0.43692 (9) 0.0283 (5)
H9A 0.9749 0.6389 0.4127 0.034*
C10 0.84603 (18) 0.5686 (2) 0.47263 (9) 0.0268 (4)
H10A 0.8647 0.4491 0.4721 0.032*
C11 0.75345 (18) 0.6289 (2) 0.50939 (9) 0.0258 (4)
C12 0.72431 (18) 0.8045 (3) 0.50722 (9) 0.0288 (5)
H12A 0.6595 0.8469 0.5310 0.035*
C13 0.78828 (18) 0.9175 (3) 0.47105 (9) 0.0289 (5)
H13A 0.7671 1.0364 0.4701 0.035*
C14 0.68875 (18) 0.5107 (2) 0.55019 (9) 0.0256 (4)
C15 0.57733 (18) 0.5326 (2) 0.57719 (9) 0.0265 (4)
H15A 0.5229 0.6312 0.5738 0.032*
C16 0.46450 (19) 0.3426 (3) 0.65116 (9) 0.0302 (5)
H16A 0.3817 0.3995 0.6326 0.036*
H16B 0.4495 0.2168 0.6499 0.036*
C17 0.59651 (18) 0.2857 (2) 0.75702 (9) 0.0288 (4)
H17A 0.6829 0.3018 0.7438 0.035*
H17B 0.5713 0.1634 0.7505 0.035*
C18 0.59977 (19) 0.3374 (3) 0.82907 (10) 0.0334 (5)
H18A 0.6391 0.4531 0.8364 0.040*
H18B 0.5099 0.3439 0.8387 0.040*
H1A 1.118 (2) 0.846 (3) 0.3930 (10) 0.040 (6)*
H2A 0.756 (3) 0.258 (3) 0.8779 (12) 0.068 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0328 (8) 0.0313 (8) 0.0286 (7) 0.0077 (6) 0.0061 (6) 0.0048 (6)
O2 0.0256 (8) 0.0346 (8) 0.0382 (8) −0.0039 (7) −0.0008 (6) 0.0083 (6)
N1 0.0222 (9) 0.0261 (9) 0.0313 (9) 0.0041 (7) 0.0043 (7) 0.0013 (7)
N2 0.0257 (9) 0.0280 (9) 0.0289 (9) 0.0042 (7) 0.0026 (7) −0.0002 (7)
N3 0.0248 (9) 0.0285 (9) 0.0286 (9) 0.0033 (7) 0.0053 (7) 0.0029 (7)
N4 0.0326 (10) 0.0313 (10) 0.0427 (10) 0.0087 (8) 0.0114 (8) 0.0057 (8)
N5 0.0304 (9) 0.0340 (10) 0.0362 (9) 0.0060 (8) 0.0096 (8) 0.0050 (8)
C1 0.0226 (10) 0.0288 (11) 0.0234 (10) 0.0030 (8) 0.0015 (8) −0.0039 (8)
C2 0.0250 (10) 0.0266 (10) 0.0267 (10) 0.0009 (8) 0.0002 (8) −0.0009 (8)
C3 0.0246 (11) 0.0352 (12) 0.0357 (11) 0.0023 (9) 0.0063 (9) −0.0009 (9)
C4 0.0291 (11) 0.0408 (13) 0.0358 (11) −0.0034 (10) 0.0073 (9) 0.0024 (9)
C5 0.0342 (12) 0.0337 (12) 0.0334 (11) −0.0038 (10) 0.0003 (9) 0.0079 (9)
C6 0.0292 (11) 0.0302 (11) 0.0316 (11) 0.0036 (9) −0.0007 (9) 0.0012 (9)
C7 0.0224 (10) 0.0289 (11) 0.0251 (10) −0.0009 (8) 0.0017 (8) −0.0018 (8)
C8 0.0226 (10) 0.0296 (11) 0.0225 (9) 0.0023 (8) 0.0000 (8) −0.0002 (8)
C9 0.0222 (10) 0.0340 (12) 0.0287 (10) 0.0040 (9) 0.0041 (8) −0.0043 (9)
C10 0.0244 (10) 0.0265 (10) 0.0289 (10) 0.0029 (8) 0.0020 (8) −0.0011 (8)
C11 0.0233 (10) 0.0315 (11) 0.0215 (9) 0.0014 (8) 0.0003 (8) 0.0002 (8)
C12 0.0274 (11) 0.0338 (11) 0.0262 (10) 0.0061 (9) 0.0075 (8) −0.0007 (9)
C13 0.0313 (11) 0.0270 (11) 0.0282 (10) 0.0059 (9) 0.0043 (9) 0.0020 (8)
C14 0.0248 (10) 0.0277 (10) 0.0229 (10) 0.0040 (8) 0.0000 (8) −0.0013 (8)
C15 0.0280 (11) 0.0258 (11) 0.0250 (10) 0.0036 (8) 0.0019 (8) 0.0005 (8)
C16 0.0259 (10) 0.0335 (11) 0.0318 (11) 0.0004 (9) 0.0063 (9) 0.0048 (9)
C17 0.0271 (11) 0.0250 (10) 0.0344 (11) 0.0022 (9) 0.0054 (9) 0.0051 (8)
C18 0.0266 (11) 0.0368 (12) 0.0360 (11) 0.0048 (9) 0.0019 (9) 0.0020 (9)

Geometric parameters (Å, º)

O1—C16 1.398 (2) C6—C7 1.394 (3)
O1—C17 1.436 (2) C6—H6A 0.9500
O2—C18 1.418 (2) C8—C9 1.396 (3)
O2—H2A 0.92 (3) C8—C13 1.399 (3)
N1—C1 1.367 (2) C9—C10 1.383 (3)
N1—C2 1.382 (2) C9—H9A 0.9500
N1—H1A 0.89 (2) C10—C11 1.393 (3)
N2—C1 1.325 (2) C10—H10A 0.9500
N2—C7 1.394 (2) C11—C12 1.398 (3)
N3—C15 1.346 (2) C11—C14 1.471 (3)
N3—N4 1.349 (2) C12—C13 1.382 (3)
N3—C16 1.458 (2) C12—H12A 0.9500
N4—N5 1.318 (2) C13—H13A 0.9500
N5—C14 1.371 (2) C14—C15 1.374 (3)
C1—C8 1.465 (3) C15—H15A 0.9500
C2—C3 1.390 (3) C16—H16A 0.9900
C2—C7 1.404 (3) C16—H16B 0.9900
C3—C4 1.383 (3) C17—C18 1.506 (3)
C3—H3A 0.9500 C17—H17A 0.9900
C4—C5 1.402 (3) C17—H17B 0.9900
C4—H4A 0.9500 C18—H18A 0.9900
C5—C6 1.381 (3) C18—H18B 0.9900
C5—H5A 0.9500
C16—O1—C17 115.06 (14) C8—C9—H9A 119.4
C18—O2—H2A 104.2 (16) C9—C10—C11 120.37 (18)
C1—N1—C2 107.60 (16) C9—C10—H10A 119.8
C1—N1—H1A 125.3 (13) C11—C10—H10A 119.8
C2—N1—H1A 126.2 (14) C10—C11—C12 118.60 (18)
C1—N2—C7 105.41 (15) C10—C11—C14 120.69 (17)
C15—N3—N4 110.95 (15) C12—C11—C14 120.70 (17)
C15—N3—C16 128.43 (16) C13—C12—C11 121.04 (18)
N4—N3—C16 120.43 (15) C13—C12—H12A 119.5
N5—N4—N3 107.03 (15) C11—C12—H12A 119.5
N4—N5—C14 109.09 (15) C12—C13—C8 120.37 (18)
N2—C1—N1 112.19 (17) C12—C13—H13A 119.8
N2—C1—C8 125.05 (17) C8—C13—H13A 119.8
N1—C1—C8 122.75 (17) N5—C14—C15 107.68 (17)
N1—C2—C3 132.73 (18) N5—C14—C11 122.44 (17)
N1—C2—C7 105.15 (16) C15—C14—C11 129.88 (17)
C3—C2—C7 122.11 (18) N3—C15—C14 105.25 (17)
C4—C3—C2 116.87 (19) N3—C15—H15A 127.4
C4—C3—H3A 121.6 C14—C15—H15A 127.4
C2—C3—H3A 121.6 O1—C16—N3 112.07 (15)
C3—C4—C5 121.50 (19) O1—C16—H16A 109.2
C3—C4—H4A 119.3 N3—C16—H16A 109.2
C5—C4—H4A 119.3 O1—C16—H16B 109.2
C6—C5—C4 121.51 (19) N3—C16—H16B 109.2
C6—C5—H5A 119.2 H16A—C16—H16B 107.9
C4—C5—H5A 119.2 O1—C17—C18 106.53 (15)
C5—C6—C7 117.71 (19) O1—C17—H17A 110.4
C5—C6—H6A 121.1 C18—C17—H17A 110.4
C7—C6—H6A 121.1 O1—C17—H17B 110.4
C6—C7—N2 130.04 (18) C18—C17—H17B 110.4
C6—C7—C2 120.30 (18) H17A—C17—H17B 108.6
N2—C7—C2 109.64 (16) O2—C18—C17 111.68 (16)
C9—C8—C13 118.37 (17) O2—C18—H18A 109.3
C9—C8—C1 121.16 (17) C17—C18—H18A 109.3
C13—C8—C1 120.47 (17) O2—C18—H18B 109.3
C10—C9—C8 121.20 (18) C17—C18—H18B 109.3
C10—C9—H9A 119.4 H18A—C18—H18B 107.9
C15—N3—N4—N5 −0.3 (2) C13—C8—C9—C10 −0.8 (3)
C16—N3—N4—N5 −175.62 (15) C1—C8—C9—C10 178.93 (16)
N3—N4—N5—C14 0.3 (2) C8—C9—C10—C11 −1.1 (3)
C7—N2—C1—N1 0.1 (2) C9—C10—C11—C12 2.4 (3)
C7—N2—C1—C8 −178.63 (17) C9—C10—C11—C14 −176.93 (17)
C2—N1—C1—N2 0.3 (2) C10—C11—C12—C13 −1.9 (3)
C2—N1—C1—C8 179.09 (16) C14—C11—C12—C13 177.50 (17)
C1—N1—C2—C3 −179.47 (19) C11—C12—C13—C8 0.0 (3)
C1—N1—C2—C7 −0.60 (19) C9—C8—C13—C12 1.4 (3)
N1—C2—C3—C4 178.25 (19) C1—C8—C13—C12 −178.36 (17)
C7—C2—C3—C4 −0.5 (3) N4—N5—C14—C15 −0.3 (2)
C2—C3—C4—C5 −0.2 (3) N4—N5—C14—C11 −179.91 (16)
C3—C4—C5—C6 0.3 (3) C10—C11—C14—N5 16.1 (3)
C4—C5—C6—C7 0.3 (3) C12—C11—C14—N5 −163.22 (17)
C5—C6—C7—N2 −179.28 (18) C10—C11—C14—C15 −163.43 (18)
C5—C6—C7—C2 −1.0 (3) C12—C11—C14—C15 17.2 (3)
C1—N2—C7—C6 177.95 (19) N4—N3—C15—C14 0.1 (2)
C1—N2—C7—C2 −0.5 (2) C16—N3—C15—C14 174.99 (17)
N1—C2—C7—C6 −177.94 (16) N5—C14—C15—N3 0.1 (2)
C3—C2—C7—C6 1.1 (3) C11—C14—C15—N3 179.71 (18)
N1—C2—C7—N2 0.7 (2) C17—O1—C16—N3 −77.18 (19)
C3—C2—C7—N2 179.71 (16) C15—N3—C16—O1 −85.9 (2)
N2—C1—C8—C9 160.37 (18) N4—N3—C16—O1 88.6 (2)
N1—C1—C8—C9 −18.3 (3) C16—O1—C17—C18 −166.70 (15)
N2—C1—C8—C13 −19.9 (3) O1—C17—C18—O2 169.44 (15)
N1—C1—C8—C13 161.50 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4i 0.89 (2) 2.50 (2) 3.244 (2) 141.7 (17)
N1—H1A···N5i 0.89 (2) 2.21 (2) 3.088 (2) 170.4 (19)
O2—H2A···N2ii 0.92 (3) 1.85 (3) 2.761 (2) 171 (2)
C15—H15A···O2iii 0.95 2.54 3.271 (2) 134
C16—H16A···O2iii 0.99 2.54 3.258 (2) 129
C17—H17B···O1iv 0.99 2.35 3.279 (2) 155

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2282).

References

  1. Andrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Eur. J. Med. Chem. 37, 973–978. [DOI] [PubMed]
  2. Chen, M. D., Lu, S. J., Yuan, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421–426.
  3. Crisp, G. T. & Flynn, B. L. (1993). J. Org. Chem. 58, 6614–6619.
  4. Huisgen, R. (1963). Angew. Chem. Int Ed 2, 565–598.
  5. Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152.
  6. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346. [DOI] [PubMed]
  7. Navarrete-Vázquez, G., Morena-Diaz, H., Estrado-Soto, S., Torres-Piedra, M., León-Rivera, I., Tlahuext, H., Muñoz-Muñiz, O. & Torres-Gómez, H. (2007). Synth. Commun. 37, 2815–2825.
  8. Navarrete-Vázquez, G., Yépez, L., Hernández-Campos, A., Tapia, A., Hernández-Luis, F., Cedillo, R., González, J., Martínez-Fernández, A., Martínez-Grueiro, M. & Castillo, R. (2003). Bioorg. Med. Chem. 11, 4615–4622. [DOI] [PubMed]
  9. Özden, S., Atabey, D., Yildiz, S. & Göker, H. (2005). Bioorg. Med. Chem. 13, 1587–1597. [DOI] [PubMed]
  10. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  13. Tebbe, M. J., Spitzer, W. A., Victor, F., Miller, S. C., Lee, C. C., Sattelberg Sr, T. R., McKinney, E. & Tang, J. C. (1997). J. Med. Chem. 40, 3937–3946. [DOI] [PubMed]
  14. Terzioglu, N., van Rijn, R. M., Bakker, R. A., De Esch, I. J. P. & Leurs, R. (2004). Bioorg. Med. Chem. Lett. 14, 5251–5256. [DOI] [PubMed]
  15. Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Fréchet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023410/nc2282sup1.cif

e-68-o1908-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023410/nc2282Isup2.hkl

e-68-o1908-Isup2.hkl (161.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023410/nc2282Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES