Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1909–o1910. doi: 10.1107/S1600536812023082

4-[(3-Hy­droxy­anil­ino)­(phenyl)­methyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Keraghel Saida a,*, Benghanem Fatiha a, Dehbi Ouarda a, Ourari Ali a, Ouari Kamel a, Lydia Brelot b
PMCID: PMC3379466  PMID: 22719664

Abstract

In the title compound, C23H19N3O2, the dihedral angles formed by the pyrazolone ring with the three benzene rings are 30.91 (6), 60.96 (4) and 57.01 (4)°. The ligand is in the enamine–keto form and its structure is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, O—H⋯N hydrogen bonds link mol­ecules into chains parallel to [01-1].

Related literature  

For the synthesis and applications of pyrazolo­nes and derivative compounds, see: Jensen (1959); Casas et al. (2007); Metwally et al. (1985); Morris et al. (1986); Raja et al. (2012); Delgado et al. (2006); Liskovskaya et al. (2006); Peng et al. (2004); Wang et al. (2002); Ramasamy et al. (2010); Thakar et al. (2010); Xu et al. (2006); Zhu et al. (2005); Wang et al. (2003).graphic file with name e-68-o1909-scheme1.jpg

Experimental  

Crystal data  

  • C23H19N3O2

  • M r = 369.41

  • Triclinic, Inline graphic

  • a = 9.5239 (3) Å

  • b = 10.4564 (4) Å

  • c = 10.8120 (4) Å

  • α = 66.870 (1)°

  • β = 72.208 (1)°

  • γ = 72.908 (1)°

  • V = 924.04 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.18 × 0.18 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995) T min = 0.985, T max = 0.990

  • 11733 measured reflections

  • 4227 independent reflections

  • 3385 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.096

  • S = 1.05

  • 4227 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023082/vm2173sup1.cif

e-68-o1909-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023082/vm2173Isup2.hkl

e-68-o1909-Isup2.hkl (202.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023082/vm2173Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.933 (16) 1.792 (17) 2.6189 (13) 146.1 (14)
O1—H1⋯N2i 0.93 (2) 1.84 (2) 2.7494 (13) 169.1 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Professor Jean Claude Daran, Laboratoire de Chimie de Coordination, Toulouse, France, and Professor J. P. Gisselbrecht, Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Strasbourg University, France, for their valuable contributions.

supplementary crystallographic information

Comment

4-Acyl-5-pyrazolones, a family of flexible β-diketonates and their derived Schiff bases are analgesics, antipyretics, anti-inflammatory agents and insecticides (Morris et al., 1986; Metwally et al., 1985; Casas et al., 2007; Raja et al., 2012). They have been widely used as extractants for metal traces (Delgado et al., 2006; Liskovskaya et al., 2006). Many of these compounds exhibit keto-enol tautomerism (Peng et al., 2004).

The reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with primary amines affords Schiff bases that can function as N– and O-donor tridentates ligands,(Wang et al., 2002; Ramasamy et al., 2010; Thakar et al., 2010; Xu et al., 2006; Zhu et al., 2005; Wang et al., 2003). In order to expand this field, a novel Schiff base has been synthesized and its crystal structure is reported herein for the first time. The compound (I) was prepared from the reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (H1PMBP) and 3-aminophenol. The asymmetric unit of structure (I), and the atomic numbering used, are illustrated in Fig.1.

Steric hindrance affects this structure: the pyrazolone ring C14—N3 is not coplanar with the C18–C23 benzene ring and not perpendicular to the other two benzene rings C8–C13 and C1–C6. The dihedral angles are 30.92 (6), 60.96 (4) and 57.01 (4)°.

The O atom of the 3-methyl-1-phenylpyrazol-5-one unit and the N atom of the (3-hydroxyphenyl) amine group are available for coordination with metals. The pyrazolone ring is planar and atoms O2, C16, C14, C7 and N1 are coplanar, the largest deviation being 0.0179 (7) Å for atom C16. The dihedral angle between this plane (O2 C16 C14 C7 N1) and the pyrazolone ring of PMBP is 4.43 (8)°, close to the values of 4.01 (12)° found in (4Z)-[4 fluorobenzylamino)(phenyl)-methylene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and 5.05 (3)° found in 4-[(2-hydroxyphenylamino)phenylmethylene] -5-methyl-2-phenyl-2H-pyrazol-3(4H)-one, respectively (Xu et al., 2006; Wang et al., 2002).

The C15—N2—N3—C18 torsion angle is 176.73 (10)° , different from the value of 16.7 (3)° in 3-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenylpyrazol-4-ylmino)-4,4,4-trifluoro-1-(2-thienyl)-butane-1,2-dione (Wang et al., 2002). Small torsion angles for N1 C7 C14 C16 [5.66 (17); O1 C1 C6 C5 [-178.76 (11)° ]and N1 C5 C6 C1 [-175.56 (11)° ] show that atoms O1, N1 and O2 are in a cis conformation and can act as the coordinating atoms of a tridentate ligand.

In the pyrazole ring, the bond lengths C14—C16, C14—C15, C15—N2, N2—N3 and C16—N3 lie between classical single and double bond lengths, indicating extensive conjugation and electron delocalization. The bond angles within this ring deviate by up to 4° from the 108° angle of a regular pentagon.

A strong intramolecular N1—H1N···O2 hydrogen bond (Table 1) is observed, leading to an enamine–keto tautomeric form. This case is similar to that found by Xu et al. (2006) for 4-[(2-hydroxyphenylamino)phenylmethylene] -5-methyl-2-phenyl-2H-pyrazol-3(4H)-one [N—O = 2.75 (3) Å and N3—H3···O1 = 143 (4)°]. The molecule is further stabilized by an intermolecular O—H···N hydrogen bond (Table1, Fig.2). Intermolecular O—H···N hydrogen bonds link molecules forming chains parallel to the [0 1 -1] direction. Part of the chain structure is shown in Fig.2.

Experimental

All reagents were obtained from commercial sources and used without further purification. H1PMBP was synthesized according to the method proposed by Jensen (Jensen,1959). Ethanol solution of 139 mg (0.1 mol) of H1PMBP and 54.5 mg (0.1 mol) of m-aminophenol were refluxed together for 24 h over a steam bath. The excess solvent was removed by evaporation. The title compound separated out as a yellow powder, which was collected, dried in air and dissolved afterwards in a hot mixture ethanol/water (9.5/0.5). A bright yellow single crystals, suitable for X-ray analysis, were obtained by slow cooling of a warmed ethanol solution for one night. The product is stable in air, and soluble in acetone and ethanol. Elemental analysis: calculated C 74.78, H 5.18, N 11.37%; found C 74.34, H 5.20, N 11.33%.

Refinement

The H atoms, except for the H-atoms of the OH and NH groups which were located from Fourier difference maps, were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

Partial packing view showing the intra and intermolecular hydrogen bonds (dashed lines). H atoms not involved in hydrogen bondings have been omitted for clarity [symmetry code: (i) x, y - 1, z + 1].

Crystal data

C23H19N3O2 Z = 2
Mr = 369.41 F(000) = 388
Triclinic, P1 Dx = 1.328 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5239 (3) Å Cell parameters from 5178 reflections
b = 10.4564 (4) Å θ = 2.2–27.5°
c = 10.8120 (4) Å µ = 0.09 mm1
α = 66.870 (1)° T = 173 K
β = 72.208 (1)° Prism, yellow
γ = 72.908 (1)° 0.18 × 0.18 × 0.12 mm
V = 924.04 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 4227 independent reflections
Radiation source: fine-focus sealed tube 3385 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) h = −12→12
Tmin = 0.985, Tmax = 0.990 k = −13→13
11733 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2126P] where P = (Fo2 + 2Fc2)/3
4227 reflections (Δ/σ)max < 0.001
262 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.01116 (13) 0.22740 (12) 1.05711 (11) 0.0238 (2)
C2 −0.09952 (13) 0.14965 (12) 1.04593 (12) 0.0248 (2)
H2 −0.1181 0.0632 1.1168 0.030*
C3 −0.16031 (14) 0.19913 (13) 0.93055 (12) 0.0279 (3)
H3 −0.2208 0.1457 0.9232 0.034*
C4 −0.13494 (14) 0.32492 (13) 0.82548 (12) 0.0274 (3)
H4 −0.1776 0.3579 0.7470 0.033*
C5 −0.04596 (13) 0.40146 (12) 0.83745 (11) 0.0223 (2)
C6 0.01657 (13) 0.35299 (12) 0.95185 (12) 0.0237 (2)
H6 0.0785 0.4056 0.9584 0.028*
C7 −0.08678 (13) 0.63561 (12) 0.65184 (11) 0.0219 (2)
C8 −0.25221 (13) 0.65063 (12) 0.68941 (12) 0.0232 (2)
C9 −0.33026 (14) 0.64999 (13) 0.82172 (13) 0.0300 (3)
H9 −0.2779 0.6444 0.8863 0.036*
C10 −0.48420 (16) 0.65755 (15) 0.85869 (16) 0.0407 (3)
H10 −0.5378 0.6578 0.9485 0.049*
C11 −0.56012 (16) 0.66473 (16) 0.76479 (18) 0.0455 (4)
H11 −0.6657 0.6690 0.7908 0.055*
C12 −0.48350 (16) 0.66578 (16) 0.63376 (17) 0.0419 (4)
H12 −0.5364 0.6711 0.5697 0.050*
C13 −0.32956 (14) 0.65906 (14) 0.59534 (14) 0.0304 (3)
H13 −0.2769 0.6602 0.5049 0.036*
C14 −0.00957 (13) 0.73156 (12) 0.53841 (11) 0.0222 (2)
C15 −0.05592 (13) 0.86809 (12) 0.44249 (11) 0.0225 (2)
C16 0.15253 (13) 0.70331 (12) 0.50200 (11) 0.0235 (2)
C17 −0.20976 (14) 0.95569 (13) 0.43172 (13) 0.0307 (3)
H17A −0.2025 1.0550 0.3791 0.046*
H17B −0.2716 0.9486 0.5243 0.046*
H17C −0.2561 0.9210 0.3847 0.046*
C18 0.33584 (13) 0.83449 (13) 0.30742 (11) 0.0240 (2)
C19 0.36999 (15) 0.96867 (14) 0.24046 (13) 0.0316 (3)
H19 0.2952 1.0506 0.2464 0.038*
C20 0.51470 (17) 0.98159 (16) 0.16477 (16) 0.0442 (4)
H20 0.5384 1.0733 0.1181 0.053*
C21 0.62474 (17) 0.86396 (17) 0.15593 (16) 0.0449 (4)
H21 0.7240 0.8742 0.1053 0.054*
C22 0.58928 (16) 0.73101 (16) 0.22143 (15) 0.0410 (3)
H22 0.6645 0.6495 0.2148 0.049*
C23 0.44521 (15) 0.71527 (14) 0.29675 (14) 0.0337 (3)
H23 0.4213 0.6235 0.3408 0.040*
N1 −0.00339 (12) 0.52529 (11) 0.72968 (10) 0.0260 (2)
N2 0.06091 (11) 0.91852 (10) 0.35404 (9) 0.0235 (2)
N3 0.18928 (11) 0.81690 (10) 0.38753 (10) 0.0235 (2)
O1 0.05168 (12) 0.18868 (11) 1.16665 (10) 0.0402 (3)
O2 0.24418 (9) 0.60062 (9) 0.55996 (9) 0.0323 (2)
H1N 0.0991 (19) 0.5271 (17) 0.6993 (17) 0.044 (4)*
H1 0.049 (2) 0.096 (2) 1.223 (2) 0.068 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0256 (6) 0.0201 (6) 0.0209 (5) −0.0036 (4) −0.0070 (4) −0.0011 (4)
C2 0.0292 (6) 0.0175 (5) 0.0218 (5) −0.0074 (4) −0.0011 (5) −0.0020 (4)
C3 0.0337 (7) 0.0248 (6) 0.0267 (6) −0.0127 (5) −0.0049 (5) −0.0063 (5)
C4 0.0338 (7) 0.0265 (6) 0.0220 (5) −0.0103 (5) −0.0089 (5) −0.0029 (5)
C5 0.0211 (5) 0.0184 (5) 0.0205 (5) −0.0049 (4) −0.0029 (4) 0.0002 (4)
C6 0.0216 (6) 0.0197 (5) 0.0264 (6) −0.0060 (4) −0.0071 (4) −0.0015 (5)
C7 0.0247 (6) 0.0216 (6) 0.0195 (5) −0.0074 (4) −0.0079 (4) −0.0027 (4)
C8 0.0231 (6) 0.0173 (5) 0.0254 (5) −0.0057 (4) −0.0063 (4) −0.0011 (4)
C9 0.0329 (7) 0.0233 (6) 0.0280 (6) −0.0064 (5) −0.0040 (5) −0.0038 (5)
C10 0.0332 (7) 0.0286 (7) 0.0441 (8) −0.0056 (6) 0.0080 (6) −0.0082 (6)
C11 0.0214 (7) 0.0317 (7) 0.0719 (11) −0.0054 (5) −0.0030 (7) −0.0106 (7)
C12 0.0309 (7) 0.0354 (8) 0.0619 (9) −0.0061 (6) −0.0225 (7) −0.0097 (7)
C13 0.0284 (6) 0.0288 (7) 0.0331 (6) −0.0067 (5) −0.0109 (5) −0.0054 (5)
C14 0.0227 (6) 0.0219 (6) 0.0202 (5) −0.0063 (4) −0.0081 (4) −0.0013 (4)
C15 0.0272 (6) 0.0213 (6) 0.0174 (5) −0.0055 (4) −0.0061 (4) −0.0032 (4)
C16 0.0250 (6) 0.0223 (6) 0.0214 (5) −0.0101 (5) −0.0081 (4) 0.0010 (4)
C17 0.0290 (6) 0.0259 (6) 0.0251 (6) −0.0005 (5) −0.0058 (5) 0.0004 (5)
C18 0.0256 (6) 0.0255 (6) 0.0200 (5) −0.0107 (5) −0.0045 (4) −0.0030 (5)
C19 0.0327 (7) 0.0236 (6) 0.0322 (6) −0.0102 (5) 0.0014 (5) −0.0059 (5)
C20 0.0408 (8) 0.0318 (7) 0.0482 (8) −0.0192 (6) 0.0101 (6) −0.0073 (6)
C21 0.0311 (7) 0.0428 (8) 0.0477 (8) −0.0141 (6) 0.0095 (6) −0.0104 (7)
C22 0.0320 (7) 0.0336 (8) 0.0440 (8) −0.0035 (6) 0.0012 (6) −0.0086 (6)
C23 0.0326 (7) 0.0248 (6) 0.0362 (7) −0.0092 (5) −0.0040 (5) −0.0025 (5)
N1 0.0220 (5) 0.0240 (5) 0.0247 (5) −0.0094 (4) −0.0078 (4) 0.0050 (4)
N2 0.0269 (5) 0.0198 (5) 0.0199 (4) −0.0046 (4) −0.0070 (4) −0.0011 (4)
N3 0.0236 (5) 0.0200 (5) 0.0222 (5) −0.0077 (4) −0.0071 (4) 0.0017 (4)
O1 0.0596 (7) 0.0281 (5) 0.0339 (5) −0.0194 (5) −0.0282 (5) 0.0099 (4)
O2 0.0235 (4) 0.0282 (5) 0.0338 (5) −0.0087 (4) −0.0119 (4) 0.0084 (4)

Geometric parameters (Å, º)

C1—O1 1.3560 (14) C13—H13 0.9500
C1—C2 1.3875 (17) C14—C15 1.4334 (15)
C1—C6 1.3913 (15) C14—C16 1.4413 (16)
C2—C3 1.3847 (17) C15—N2 1.3150 (15)
C2—H2 0.9500 C15—C17 1.4936 (16)
C3—C4 1.3872 (16) C16—O2 1.2499 (14)
C3—H3 0.9500 C16—N3 1.3747 (14)
C4—C5 1.3865 (17) C17—H17A 0.9800
C4—H4 0.9500 C17—H17B 0.9800
C5—C6 1.3863 (16) C17—H17C 0.9800
C5—N1 1.4259 (14) C18—C19 1.3874 (17)
C6—H6 0.9500 C18—C23 1.3887 (18)
C7—N1 1.3329 (15) C18—N3 1.4211 (15)
C7—C14 1.4026 (15) C19—C20 1.3859 (18)
C7—C8 1.4784 (16) C19—H19 0.9500
C8—C13 1.3907 (17) C20—C21 1.376 (2)
C8—C9 1.3945 (17) C20—H20 0.9500
C9—C10 1.3835 (19) C21—C22 1.380 (2)
C9—H9 0.9500 C21—H21 0.9500
C10—C11 1.384 (2) C22—C23 1.3847 (18)
C10—H10 0.9500 C22—H22 0.9500
C11—C12 1.378 (2) C23—H23 0.9500
C11—H11 0.9500 N1—H1N 0.933 (16)
C12—C13 1.3846 (18) N2—N3 1.3998 (13)
C12—H12 0.9500 O1—H1 0.93 (2)
O1—C1—C2 123.78 (10) C7—C14—C16 120.73 (10)
O1—C1—C6 116.53 (11) C15—C14—C16 105.31 (9)
C2—C1—C6 119.69 (10) N2—C15—C14 111.05 (10)
C3—C2—C1 119.42 (11) N2—C15—C17 118.70 (10)
C3—C2—H2 120.3 C14—C15—C17 130.25 (10)
C1—C2—H2 120.3 O2—C16—N3 125.58 (11)
C2—C3—C4 121.52 (11) O2—C16—C14 129.22 (10)
C2—C3—H3 119.2 N3—C16—C14 105.19 (10)
C4—C3—H3 119.2 C15—C17—H17A 109.5
C5—C4—C3 118.58 (11) C15—C17—H17B 109.5
C5—C4—H4 120.7 H17A—C17—H17B 109.5
C3—C4—H4 120.7 C15—C17—H17C 109.5
C6—C5—C4 120.65 (10) H17A—C17—H17C 109.5
C6—C5—N1 116.68 (10) H17B—C17—H17C 109.5
C4—C5—N1 122.45 (10) C19—C18—C23 120.14 (11)
C5—C6—C1 120.13 (11) C19—C18—N3 120.74 (11)
C5—C6—H6 119.9 C23—C18—N3 119.12 (11)
C1—C6—H6 119.9 C20—C19—C18 119.12 (13)
N1—C7—C14 116.75 (10) C20—C19—H19 120.4
N1—C7—C8 119.11 (10) C18—C19—H19 120.4
C14—C7—C8 124.14 (10) C21—C20—C19 121.20 (13)
C13—C8—C9 119.82 (11) C21—C20—H20 119.4
C13—C8—C7 120.26 (11) C19—C20—H20 119.4
C9—C8—C7 119.86 (11) C20—C21—C22 119.28 (13)
C10—C9—C8 119.79 (13) C20—C21—H21 120.4
C10—C9—H9 120.1 C22—C21—H21 120.4
C8—C9—H9 120.1 C21—C22—C23 120.66 (14)
C9—C10—C11 120.01 (14) C21—C22—H22 119.7
C9—C10—H10 120.0 C23—C22—H22 119.7
C11—C10—H10 120.0 C22—C23—C18 119.59 (12)
C12—C11—C10 120.40 (13) C22—C23—H23 120.2
C12—C11—H11 119.8 C18—C23—H23 120.2
C10—C11—H11 119.8 C7—N1—C5 129.53 (10)
C11—C12—C13 120.10 (14) C7—N1—H1N 112.5 (10)
C11—C12—H12 119.9 C5—N1—H1N 117.4 (10)
C13—C12—H12 119.9 C15—N2—N3 106.92 (9)
C12—C13—C8 119.87 (13) C16—N3—N2 111.43 (9)
C12—C13—H13 120.1 C16—N3—C18 126.83 (10)
C8—C13—H13 120.1 N2—N3—C18 121.73 (9)
C7—C14—C15 133.89 (11) C1—O1—H1 112.6 (12)
O1—C1—C2—C3 179.16 (12) C16—C14—C15—C17 −177.58 (12)
C6—C1—C2—C3 −0.70 (18) C7—C14—C16—O2 −1.3 (2)
C1—C2—C3—C4 0.02 (19) C15—C14—C16—O2 176.13 (13)
C2—C3—C4—C5 0.24 (19) C7—C14—C16—N3 179.66 (11)
C3—C4—C5—C6 0.17 (19) C15—C14—C16—N3 −2.87 (13)
C3—C4—C5—N1 174.57 (11) C23—C18—C19—C20 −0.9 (2)
C4—C5—C6—C1 −0.85 (18) N3—C18—C19—C20 179.14 (12)
N1—C5—C6—C1 −175.56 (11) C18—C19—C20—C21 −0.5 (2)
O1—C1—C6—C5 −178.76 (11) C19—C20—C21—C22 1.3 (3)
C2—C1—C6—C5 1.12 (18) C20—C21—C22—C23 −0.8 (3)
N1—C7—C8—C13 −123.11 (13) C21—C22—C23—C18 −0.6 (2)
C14—C7—C8—C13 57.38 (17) C19—C18—C23—C22 1.4 (2)
N1—C7—C8—C9 54.03 (16) N3—C18—C23—C22 −178.59 (12)
C14—C7—C8—C9 −125.48 (13) C14—C7—N1—C5 −169.85 (12)
C13—C8—C9—C10 0.09 (18) C8—C7—N1—C5 10.60 (19)
C7—C8—C9—C10 −177.06 (11) C6—C5—N1—C7 −140.00 (13)
C8—C9—C10—C11 0.4 (2) C4—C5—N1—C7 45.39 (19)
C9—C10—C11—C12 −0.6 (2) C14—C15—N2—N3 0.31 (13)
C10—C11—C12—C13 0.3 (2) C17—C15—N2—N3 179.62 (10)
C11—C12—C13—C8 0.3 (2) O2—C16—N3—N2 −175.82 (12)
C9—C8—C13—C12 −0.45 (19) C14—C16—N3—N2 3.24 (13)
C7—C8—C13—C12 176.69 (12) O2—C16—N3—C18 5.2 (2)
N1—C7—C14—C15 −170.95 (13) C14—C16—N3—C18 −175.73 (11)
C8—C7—C14—C15 8.6 (2) C15—N2—N3—C16 −2.30 (13)
N1—C7—C14—C16 5.66 (17) C15—N2—N3—C18 176.73 (10)
C8—C7—C14—C16 −174.82 (11) C19—C18—N3—C16 −149.41 (12)
C7—C14—C15—N2 178.60 (13) C23—C18—N3—C16 30.60 (18)
C16—C14—C15—N2 1.63 (13) C19—C18—N3—N2 31.72 (17)
C7—C14—C15—C17 −0.6 (2) C23—C18—N3—N2 −148.27 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2 0.933 (16) 1.792 (17) 2.6189 (13) 146.1 (14)
O1—H1···N2i 0.93 (2) 1.84 (2) 2.7494 (13) 169.1 (18)

Symmetry code: (i) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2173).

References

  1. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Casas, J. S., Garcia-Tasende, M. S., Sanchez, S. J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.
  4. Delgado, S., Munoz, A., Medina, M. E. & Pastor, C. J. (2006). Inorg. Chim. Acta, 359, 109–117.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.
  7. Liskovskaya, T. I., Semyannikov, P. P., Baidina, I. A., Stabnikov, P. A., Pervukhina, N. V., Logvinenko, V. A., Igumenov, I. K. & Sokolov, I. E. (2006). J. Struct. Chem. 47, 726–734.
  8. Metwally, M. A., Youshif, M. Y., Osmaiel, A. M. & Amo, F. A. (1985). J. Indian Chem. Soc. 62, 54–56.
  9. Morris, G. E., Anderson, B. F. & Baker, E. N. (1986). J. Am. Chem. Soc. 108, 2784–2785.
  10. Peng, B., Liu, G., Liu, L., Jia, D. & Yu, K. (2004). J. Mol. Struct. 692, 217–222.
  11. Raja, G., Ray, J. & Chinnasamy, B. (2012). Transition Met. Chem. 37, 169–174.
  12. Ramasamy, J., Gnanasambandam, V. & Pillutla, S. R. (2010). Org. Chem. Int. , Article ID 648589, 7 pages.
  13. Sheldrick, G. M. (1995). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Thakar, A. S., Singh, K. K., Joshi, K. T., Pancholi, A. M. & Pandya, K. S. (2010). E-J. Chem. 7, 1396–1406.
  17. Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.
  18. Wang, J.-L., Zhang, S.-M. & Miao, F.-M. (2002). Acta Cryst. E58, o1365–o1366.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Xu, H.-Z., Si, X.-K., Zhu, Y.-Q. & Song, H.-B. (2006). Acta Cryst. E62, o3266–o3268.
  21. Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023082/vm2173sup1.cif

e-68-o1909-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023082/vm2173Isup2.hkl

e-68-o1909-Isup2.hkl (202.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023082/vm2173Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES