Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1919. doi: 10.1107/S1600536812023483

Ethyl (2E,4Z)-5-diethyl­amino-2-(phenyl­sulfon­yl)penta-2,4-dienoate

Guo-Qiang Song a, Pei-Pei Yu a, Xian-Feng Huang a,*
PMCID: PMC3379474  PMID: 22719672

Abstract

In the title compound, C17H23NO4S, the penta­diene group adopts a planar conformation, with an r.m.s. deviation of 0.0410 (14) Å. The phenyl ring makes a dihedral angle of 85.73 (11)° with the penta­diene group, while the penta­diene group makes dihedral angles of 11.38 (11) and 14.08 (10)°, respectively, with the amino and ester groups. In the crystal, molecules are linked via pairs of C—H⋯O inter­actions, forming inversion dimers.

Related literature  

For background information on penta­dienoates, see: Sorbetti et al. (2007). For structural data of penta­dienoates, see: Ceard et al. (2002). For details of weak hydrogen-bonding inter­actions, see: Steiner (2002).graphic file with name e-68-o1919-scheme1.jpg

Experimental  

Crystal data  

  • C17H23NO4S

  • M r = 337.42

  • Monoclinic, Inline graphic

  • a = 14.489 (2) Å

  • b = 8.2989 (12) Å

  • c = 16.706 (3) Å

  • β = 114.313 (3)°

  • V = 1830.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.669, T max = 0.746

  • 11618 measured reflections

  • 4183 independent reflections

  • 2977 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.168

  • S = 1.04

  • 4183 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023483/pk2405sup1.cif

e-68-o1919-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023483/pk2405Isup2.hkl

e-68-o1919-Isup2.hkl (205KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023483/pk2405Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.93 2.41 3.277 (3) 155

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Analogues of pentadienoate have been used widely in perfumes, lubricants, as pharmaceutical intermediates and in other chemical industries (Ceard et al., 2002; Sorbetti et al., 2007). In this work, we report the crystal structure of the title compound, C17H23NO4S, (I). In the crystal (Fig. 1), the pentadiene group adopts a planar conformation with an r.m.s. deviation of 0.0410 (14) Å. The phenyl ring makes a dihedral angle of 85.73 (11)° with the pentadiene group. The dihedral angle of pentadiene with the amino group (atoms N1, C14, C16) is 11.38 (11)° and the dihedral angle between pentadiene and the ester group (atoms C8, O3, O4) is 14.08 (10)°. The crystal structure exhibits weak intermolecular C—H···O hydrogen bonds (Steiner, 2002; Table 1) between pairs of inversion related (-x, 1-y, 1-z) molecules to produce a weakly hydrogen-bonded dimer as shown in Fig. 2.

Experimental

The title compound was prepared by stirring a mixture of malonaldehyde bis(dimethyl acetal) (411 mg, 2.5 mmol), ethanamine (366 mg, 2.5 mmol) and acetic acid (300 mg, 5 mmol) under reflux for 1 h. After cooling, ethyl 2-(phenylsulfonyl)acetate (428 mg, 1.87 mmol), DMF (1.5 ml) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 761 mg, 5 mmol) were added and stirred for 6 h. Then the reaction mixture was added dropwise to ice water (20 ml) to give a yellow solid (259 mg), which was dissolved in 2-propanol. Pale yellow rhomboid-shaped crystals of (I) formed upon evaporation after 7d.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing diagram of (I) with weak hydrogen bonds indicated as dashed lines.

Crystal data

C17H23NO4S F(000) = 720
Mr = 337.42 Dx = 1.224 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3554 reflections
a = 14.489 (2) Å θ = 2.7–25.5°
b = 8.2989 (12) Å µ = 0.20 mm1
c = 16.706 (3) Å T = 296 K
β = 114.313 (3)° Block, pale yellow
V = 1830.6 (5) Å3 0.28 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4183 independent reflections
Radiation source: fine-focus sealed tube 2977 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −18→18
Tmin = 0.669, Tmax = 0.746 k = −10→10
11618 measured reflections l = −21→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.7143P] where P = (Fo2 + 2Fc2)/3
4183 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.11499 (4) 0.59041 (7) 0.39164 (4) 0.04777 (19)
O1 0.02067 (12) 0.5770 (2) 0.40107 (12) 0.0639 (5)
O2 0.12167 (17) 0.7075 (2) 0.33125 (13) 0.0767 (6)
O3 0.38118 (13) 0.6802 (3) 0.58018 (13) 0.0790 (7)
O4 0.33628 (15) 0.6001 (3) 0.44145 (14) 0.0809 (7)
N1 0.22370 (15) 0.6412 (3) 0.79523 (13) 0.0586 (5)
C1 0.13732 (16) 0.3988 (3) 0.35660 (15) 0.0445 (5)
C2 0.1630 (2) 0.3849 (3) 0.28691 (19) 0.0635 (7)
H2A 0.1709 0.4763 0.2581 0.076*
C3 0.1772 (2) 0.2316 (4) 0.2595 (2) 0.0825 (10)
H3A 0.1942 0.2202 0.2119 0.099*
C4 0.1661 (2) 0.0986 (4) 0.3026 (2) 0.0787 (9)
H4A 0.1764 −0.0032 0.2844 0.094*
C5 0.1404 (3) 0.1130 (3) 0.3716 (2) 0.0789 (9)
H5A 0.1338 0.0213 0.4009 0.095*
C6 0.1240 (2) 0.2627 (3) 0.39856 (18) 0.0623 (7)
H6A 0.1041 0.2724 0.4446 0.075*
C7 0.21004 (16) 0.6228 (3) 0.49653 (15) 0.0455 (5)
C8 0.31330 (19) 0.6342 (3) 0.50106 (17) 0.0572 (6)
C9 0.4909 (2) 0.6711 (6) 0.5980 (3) 0.1000 (12)
H9A 0.5311 0.6566 0.6604 0.120*
H9B 0.5027 0.5796 0.5673 0.120*
C10 0.5202 (4) 0.8158 (8) 0.5691 (4) 0.153 (2)
H10A 0.5916 0.8128 0.5836 0.229*
H10B 0.5053 0.9064 0.5975 0.229*
H10C 0.4836 0.8258 0.5066 0.229*
C11 0.18153 (17) 0.6212 (3) 0.56550 (15) 0.0453 (5)
H11A 0.1130 0.6014 0.5493 0.054*
C12 0.23716 (17) 0.6439 (3) 0.65536 (15) 0.0480 (5)
H12A 0.3055 0.6710 0.6780 0.058*
C13 0.18773 (18) 0.6250 (3) 0.70915 (16) 0.0522 (6)
H13A 0.1197 0.5969 0.6813 0.063*
C14 0.1598 (3) 0.6048 (4) 0.8424 (2) 0.0772 (9)
H14A 0.1037 0.5372 0.8056 0.093*
H14B 0.1993 0.5447 0.8953 0.093*
C15 0.1196 (3) 0.7509 (5) 0.8664 (3) 0.1104 (14)
H15A 0.0789 0.7212 0.8971 0.166*
H15B 0.0788 0.8094 0.8141 0.166*
H15C 0.1748 0.8175 0.9035 0.166*
C16 0.32789 (19) 0.6914 (3) 0.84751 (16) 0.0595 (6)
H16A 0.3300 0.7548 0.8970 0.071*
H16B 0.3504 0.7597 0.8119 0.071*
C17 0.3990 (3) 0.5521 (4) 0.8809 (3) 0.0984 (11)
H17A 0.4649 0.5909 0.9193 0.148*
H17B 0.4034 0.4962 0.8323 0.148*
H17C 0.3744 0.4799 0.9126 0.148*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0517 (3) 0.0390 (3) 0.0470 (3) 0.0037 (2) 0.0147 (2) −0.0007 (2)
O1 0.0429 (9) 0.0721 (12) 0.0661 (11) 0.0088 (8) 0.0118 (8) −0.0138 (9)
O2 0.1097 (16) 0.0469 (10) 0.0628 (12) 0.0035 (10) 0.0246 (11) 0.0143 (9)
O3 0.0504 (10) 0.1203 (18) 0.0705 (12) −0.0272 (11) 0.0292 (9) −0.0313 (12)
O4 0.0694 (12) 0.1177 (18) 0.0694 (12) −0.0237 (11) 0.0426 (10) −0.0264 (12)
N1 0.0557 (12) 0.0719 (14) 0.0515 (12) −0.0186 (10) 0.0256 (10) −0.0151 (10)
C1 0.0456 (11) 0.0395 (11) 0.0466 (12) −0.0035 (9) 0.0172 (9) −0.0058 (9)
C2 0.0724 (17) 0.0638 (16) 0.0657 (16) −0.0099 (13) 0.0399 (14) −0.0077 (13)
C3 0.088 (2) 0.092 (2) 0.090 (2) −0.0117 (18) 0.0583 (19) −0.0339 (19)
C4 0.0771 (19) 0.0543 (16) 0.112 (3) −0.0126 (14) 0.0456 (19) −0.0323 (17)
C5 0.095 (2) 0.0443 (15) 0.104 (2) −0.0059 (14) 0.047 (2) −0.0028 (15)
C6 0.0828 (19) 0.0460 (13) 0.0643 (16) −0.0011 (12) 0.0366 (14) 0.0006 (12)
C7 0.0447 (11) 0.0422 (11) 0.0499 (12) −0.0043 (9) 0.0197 (10) −0.0079 (9)
C8 0.0533 (13) 0.0644 (15) 0.0590 (15) −0.0143 (12) 0.0284 (12) −0.0131 (12)
C9 0.0607 (18) 0.154 (4) 0.091 (2) −0.019 (2) 0.0365 (18) −0.023 (3)
C10 0.114 (4) 0.185 (6) 0.178 (5) −0.061 (4) 0.079 (4) −0.030 (4)
C11 0.0413 (11) 0.0406 (11) 0.0544 (13) −0.0010 (9) 0.0203 (10) −0.0077 (10)
C12 0.0435 (11) 0.0493 (12) 0.0522 (13) −0.0061 (10) 0.0205 (10) −0.0104 (10)
C13 0.0470 (12) 0.0545 (14) 0.0549 (13) −0.0104 (10) 0.0208 (10) −0.0143 (11)
C14 0.082 (2) 0.092 (2) 0.0699 (18) −0.0248 (17) 0.0428 (16) −0.0180 (16)
C15 0.102 (3) 0.121 (3) 0.137 (3) −0.019 (2) 0.079 (3) −0.033 (3)
C16 0.0630 (15) 0.0623 (16) 0.0482 (13) −0.0171 (12) 0.0177 (11) −0.0118 (12)
C17 0.080 (2) 0.078 (2) 0.115 (3) −0.0047 (18) 0.018 (2) 0.005 (2)

Geometric parameters (Å, º)

S1—O2 1.4324 (19) C9—C10 1.423 (7)
S1—O1 1.4429 (18) C9—H9A 0.9700
S1—C7 1.747 (2) C9—H9B 0.9700
S1—C1 1.770 (2) C10—H10A 0.9600
O3—C8 1.338 (3) C10—H10B 0.9600
O3—C9 1.494 (4) C10—H10C 0.9600
O4—C8 1.206 (3) C11—C12 1.394 (3)
N1—C13 1.319 (3) C11—H11A 0.9300
N1—C16 1.459 (3) C12—C13 1.369 (3)
N1—C14 1.473 (3) C12—H12A 0.9300
C1—C2 1.365 (3) C13—H13A 0.9300
C1—C6 1.384 (3) C14—C15 1.471 (5)
C2—C3 1.396 (4) C14—H14A 0.9700
C2—H2A 0.9300 C14—H14B 0.9700
C3—C4 1.363 (5) C15—H15A 0.9600
C3—H3A 0.9300 C15—H15B 0.9600
C4—C5 1.355 (5) C15—H15C 0.9600
C4—H4A 0.9300 C16—C17 1.495 (4)
C5—C6 1.375 (4) C16—H16A 0.9700
C5—H5A 0.9300 C16—H16B 0.9700
C6—H6A 0.9300 C17—H17A 0.9600
C7—C11 1.375 (3) C17—H17B 0.9600
C7—C8 1.470 (3) C17—H17C 0.9600
O2—S1—O1 118.10 (12) C9—C10—H10A 109.5
O2—S1—C7 110.37 (12) C9—C10—H10B 109.5
O1—S1—C7 107.05 (11) H10A—C10—H10B 109.5
O2—S1—C1 107.58 (11) C9—C10—H10C 109.5
O1—S1—C1 106.07 (11) H10A—C10—H10C 109.5
C7—S1—C1 107.10 (10) H10B—C10—H10C 109.5
C8—O3—C9 118.1 (2) C7—C11—C12 131.4 (2)
C13—N1—C16 121.9 (2) C7—C11—H11A 114.3
C13—N1—C14 120.6 (2) C12—C11—H11A 114.3
C16—N1—C14 117.5 (2) C13—C12—C11 117.7 (2)
C2—C1—C6 120.5 (2) C13—C12—H12A 121.2
C2—C1—S1 120.57 (19) C11—C12—H12A 121.2
C6—C1—S1 118.88 (18) N1—C13—C12 128.7 (2)
C1—C2—C3 119.0 (3) N1—C13—H13A 115.7
C1—C2—H2A 120.5 C12—C13—H13A 115.7
C3—C2—H2A 120.5 C15—C14—N1 112.5 (3)
C4—C3—C2 120.0 (3) C15—C14—H14A 109.1
C4—C3—H3A 120.0 N1—C14—H14A 109.1
C2—C3—H3A 120.0 C15—C14—H14B 109.1
C5—C4—C3 120.7 (3) N1—C14—H14B 109.1
C5—C4—H4A 119.6 H14A—C14—H14B 107.8
C3—C4—H4A 119.6 C14—C15—H15A 109.5
C4—C5—C6 120.2 (3) C14—C15—H15B 109.5
C4—C5—H5A 119.9 H15A—C15—H15B 109.5
C6—C5—H5A 119.9 C14—C15—H15C 109.5
C5—C6—C1 119.5 (3) H15A—C15—H15C 109.5
C5—C6—H6A 120.3 H15B—C15—H15C 109.5
C1—C6—H6A 120.3 N1—C16—C17 112.8 (2)
C11—C7—C8 127.5 (2) N1—C16—H16A 109.0
C11—C7—S1 117.03 (17) C17—C16—H16A 109.0
C8—C7—S1 115.27 (17) N1—C16—H16B 109.0
O4—C8—O3 122.8 (2) C17—C16—H16B 109.0
O4—C8—C7 124.3 (2) H16A—C16—H16B 107.8
O3—C8—C7 112.8 (2) C16—C17—H17A 109.5
C10—C9—O3 109.3 (4) C16—C17—H17B 109.5
C10—C9—H9A 109.8 H17A—C17—H17B 109.5
O3—C9—H9A 109.8 C16—C17—H17C 109.5
C10—C9—H9B 109.8 H17A—C17—H17C 109.5
O3—C9—H9B 109.8 H17B—C17—H17C 109.5
H9A—C9—H9B 108.3
O2—S1—C1—C2 4.3 (2) C1—S1—C7—C8 64.6 (2)
O1—S1—C1—C2 131.5 (2) C9—O3—C8—O4 −7.0 (5)
C7—S1—C1—C2 −114.4 (2) C9—O3—C8—C7 170.3 (3)
O2—S1—C1—C6 −172.9 (2) C11—C7—C8—O4 163.0 (3)
O1—S1—C1—C6 −45.7 (2) S1—C7—C8—O4 −11.1 (4)
C7—S1—C1—C6 68.4 (2) C11—C7—C8—O3 −14.3 (4)
C6—C1—C2—C3 −1.0 (4) S1—C7—C8—O3 171.59 (19)
S1—C1—C2—C3 −178.2 (2) C8—O3—C9—C10 86.6 (4)
C1—C2—C3—C4 −0.5 (5) C8—C7—C11—C12 6.7 (4)
C2—C3—C4—C5 0.7 (5) S1—C7—C11—C12 −179.3 (2)
C3—C4—C5—C6 0.7 (5) C7—C11—C12—C13 −176.0 (2)
C4—C5—C6—C1 −2.2 (5) C16—N1—C13—C12 2.6 (4)
C2—C1—C6—C5 2.4 (4) C14—N1—C13—C12 −175.8 (3)
S1—C1—C6—C5 179.6 (2) C11—C12—C13—N1 −179.4 (2)
O2—S1—C7—C11 132.99 (19) C13—N1—C14—C15 −101.9 (3)
O1—S1—C7—C11 3.2 (2) C16—N1—C14—C15 79.6 (4)
C1—S1—C7—C11 −110.18 (18) C13—N1—C16—C17 −91.9 (3)
O2—S1—C7—C8 −52.3 (2) C14—N1—C16—C17 86.6 (3)
O1—S1—C7—C8 177.97 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O1i 0.93 2.41 3.277 (3) 155

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2405).

References

  1. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ceard, S., Roche, D., Gaumet, V., Gardette, D., Metin, J. & Madesclaire, M. (2002). J. Mol. Struct. 608, 27–33.
  4. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sorbetti, J. M., Clary, K. N., Rankic, D. A., Wulff, J. E., Parvez, M. & Back, T. G. (2007). J. Org. Chem. 72, 3326–3331. [DOI] [PubMed]
  7. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023483/pk2405sup1.cif

e-68-o1919-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023483/pk2405Isup2.hkl

e-68-o1919-Isup2.hkl (205KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023483/pk2405Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES