Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1929. doi: 10.1107/S1600536812023057

1-(3,3-Dichloro­all­yloxy)-4-methyl-2-nitro­benzene

Dong-mei Ren a,*
PMCID: PMC3379484  PMID: 22719682

Abstract

In the title compound, C10H9Cl2NO3, the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloro­all­yloxy unit is 40.1 (1)°. In the crystal, C—H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O inter­actions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R 2 2(18) rings. π–π contacts between benzene rings in adjacent sheets, with centroid–centroid distances of 3.671 (2) Å, stack mol­ecules along c.

Related literature  

For background to the applications of the title compound, see: Kolosov et al. (2002). For its synthesis, see: Walker et al. (2005). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1929-scheme1.jpg

Experimental  

Crystal data  

  • C10H9Cl2NO3

  • M r = 262.08

  • Triclinic, Inline graphic

  • a = 7.5430 (15) Å

  • b = 7.7630 (16) Å

  • c = 10.713 (2) Å

  • α = 83.69 (3)°

  • β = 88.78 (3)°

  • γ = 67.23 (3)°

  • V = 574.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.851, T max = 0.947

  • 2277 measured reflections

  • 2103 independent reflections

  • 1638 reflections with I > 2σ(I)

  • R int = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.156

  • S = 1.01

  • 2103 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023057/sj5235sup1.cif

e-68-o1929-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023057/sj5235Isup2.hkl

e-68-o1929-Isup2.hkl (103.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023057/sj5235Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.93 2.59 3.241 (4) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported financially by the Capital University of Economics and Business (00891162721716) and by the Scientific Research Level Project of the Beijing Education Commission Foundation. The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

The title compound is an important intermediate in the synthesis of phenanthrenes, which can be utilized to synthesize organic semiconductors and conjugated polymers (Walker et al., 2005). These materials are of wide current interest with applications in electronic and optoelectronic devices including light-emitting diodes (Kolosov et al., 2002). We report here the crystal structure of the title compound, (I), as we have interests in this field.

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the (C1···C6) rings and the (C8/C9/C10/Cl1/Cl2/H9A) segment of the alloyloxy substituent is 40.1 (1)° with the nitro group (N/O1/O2) inclined at 39.1 (1)° to the ring plane. Bond distances in the molecule are normal (Allen et al. 1987).

In the crystal structure there is an intermolecular C1—H1A···O2 hydrogen bond that links molecules into chains along the b axis (Table 1, Fig. 2). Short Cl1···O1i (i = 1-x, -y, 1-z) contacts at a distance of 3.060 (3) Å form inversion dimers and generate R22(18) rings (Bernstein et al., 1995). These contacts link the hydrogen bonded chains into sheets approximately parallel to [-2 0 1]. Additional π···π contacts with centroid to centroid distances 3.671 (2) Å between benzene rings in adjacent sheets, stack molecules along c and generate a three dimensional network structure.

Experimental

The title compound, (I) was prepared by a method reported in literature (Walker et al., 2005). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I).

Crystal data

C10H9Cl2NO3 Z = 2
Mr = 262.08 F(000) = 268
Triclinic, P1 Dx = 1.514 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5430 (15) Å Cell parameters from 25 reflections
b = 7.7630 (16) Å θ = 10–13°
c = 10.713 (2) Å µ = 0.56 mm1
α = 83.69 (3)° T = 293 K
β = 88.78 (3)° Block, colourless
γ = 67.23 (3)° 0.30 × 0.20 × 0.10 mm
V = 574.8 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1638 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
Graphite monochromator θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→9
Absorption correction: ψ scan (North et al., 1968) k = −8→9
Tmin = 0.851, Tmax = 0.947 l = −12→12
2277 measured reflections 3 standard reflections every 200 reflections
2103 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.130P] where P = (Fo2 + 2Fc2)/3
2103 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.35049 (14) 0.31042 (13) 0.40617 (7) 0.0723 (3)
Cl2 0.20254 (13) 0.53282 (12) 0.60994 (8) 0.0713 (3)
O1 0.8637 (4) −0.2999 (3) 0.8304 (2) 0.0767 (8)
O2 0.7766 (4) −0.4263 (3) 0.9976 (2) 0.0731 (7)
O3 0.6554 (3) 0.0677 (3) 0.82149 (17) 0.0542 (5)
N 0.8110 (4) −0.2976 (3) 0.9385 (2) 0.0534 (6)
C1 0.6985 (4) 0.1898 (4) 1.0130 (3) 0.0506 (7)
H1A 0.6478 0.3133 0.9755 0.061*
C2 0.7574 (4) 0.1533 (4) 1.1372 (3) 0.0511 (7)
H2A 0.7446 0.2537 1.1816 0.061*
C3 0.8352 (4) −0.0276 (4) 1.1987 (2) 0.0461 (6)
C4 0.8481 (4) −0.1727 (4) 1.1298 (2) 0.0457 (6)
H4A 0.8972 −0.2958 1.1681 0.055*
C5 0.7892 (4) −0.1372 (4) 1.0055 (2) 0.0411 (6)
C6 0.7139 (4) 0.0451 (4) 0.9434 (2) 0.0417 (6)
C7 0.9018 (5) −0.0623 (5) 1.3344 (3) 0.0661 (9)
H7A 0.8808 0.0554 1.3652 0.099*
H7B 1.0364 −0.1409 1.3409 0.099*
H7C 0.8306 −0.1235 1.3835 0.099*
C8 0.5768 (5) 0.2544 (4) 0.7592 (3) 0.0515 (7)
H8A 0.6681 0.3142 0.7612 0.062*
H8B 0.4597 0.3296 0.7989 0.062*
C9 0.5358 (5) 0.2340 (4) 0.6279 (3) 0.0537 (7)
H9A 0.6257 0.1337 0.5915 0.064*
C10 0.3856 (5) 0.3433 (4) 0.5586 (3) 0.0517 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0946 (7) 0.0785 (6) 0.0430 (4) −0.0320 (5) −0.0101 (4) −0.0062 (4)
Cl2 0.0730 (6) 0.0587 (5) 0.0630 (5) −0.0040 (4) −0.0091 (4) −0.0066 (4)
O1 0.112 (2) 0.0556 (14) 0.0473 (13) −0.0128 (13) −0.0062 (13) −0.0175 (10)
O2 0.0858 (17) 0.0430 (12) 0.0966 (18) −0.0307 (12) 0.0023 (14) −0.0107 (12)
O3 0.0765 (14) 0.0393 (10) 0.0438 (11) −0.0199 (10) −0.0116 (10) 0.0006 (8)
N 0.0584 (15) 0.0364 (12) 0.0599 (16) −0.0107 (11) −0.0099 (12) −0.0090 (11)
C1 0.0641 (18) 0.0350 (14) 0.0531 (16) −0.0199 (13) −0.0054 (13) −0.0024 (12)
C2 0.0625 (18) 0.0450 (15) 0.0504 (16) −0.0239 (13) 0.0007 (13) −0.0127 (12)
C3 0.0460 (15) 0.0525 (16) 0.0410 (14) −0.0199 (12) 0.0037 (11) −0.0078 (12)
C4 0.0489 (15) 0.0438 (14) 0.0412 (14) −0.0166 (12) 0.0006 (11) 0.0027 (11)
C5 0.0426 (14) 0.0373 (13) 0.0453 (14) −0.0170 (11) 0.0030 (11) −0.0065 (11)
C6 0.0453 (14) 0.0415 (14) 0.0376 (13) −0.0165 (11) −0.0009 (11) −0.0020 (11)
C7 0.076 (2) 0.076 (2) 0.0444 (16) −0.0263 (18) −0.0025 (15) −0.0086 (15)
C8 0.0635 (18) 0.0411 (14) 0.0446 (15) −0.0158 (13) −0.0059 (13) 0.0023 (12)
C9 0.0617 (18) 0.0477 (16) 0.0449 (15) −0.0139 (14) 0.0011 (13) −0.0051 (12)
C10 0.0648 (18) 0.0487 (16) 0.0413 (15) −0.0218 (14) −0.0014 (13) −0.0033 (12)

Geometric parameters (Å, º)

Cl1—C10 1.721 (3) C3—C7 1.510 (4)
Cl2—C10 1.717 (3) C4—C5 1.378 (4)
O1—N 1.216 (3) C4—H4A 0.9300
O2—N 1.233 (3) C5—C6 1.398 (4)
O3—C6 1.358 (3) C7—H7A 0.9600
O3—C8 1.427 (3) C7—H7B 0.9600
N—C5 1.458 (3) C7—H7C 0.9600
C1—C2 1.375 (4) C8—C9 1.484 (4)
C1—C6 1.383 (4) C8—H8A 0.9700
C1—H1A 0.9300 C8—H8B 0.9700
C2—C3 1.388 (4) C9—C10 1.307 (4)
C2—H2A 0.9300 C9—H9A 0.9300
C3—C4 1.384 (4)
C6—O3—C8 117.7 (2) O3—C6—C5 118.1 (2)
O1—N—O2 123.7 (2) C1—C6—C5 116.9 (2)
O1—N—C5 119.6 (3) C3—C7—H7A 109.5
O2—N—C5 116.6 (2) C3—C7—H7B 109.5
C2—C1—C6 120.8 (3) H7A—C7—H7B 109.5
C2—C1—H1A 119.6 C3—C7—H7C 109.5
C6—C1—H1A 119.6 H7A—C7—H7C 109.5
C1—C2—C3 122.5 (3) H7B—C7—H7C 109.5
C1—C2—H2A 118.7 O3—C8—C9 105.5 (2)
C3—C2—H2A 118.7 O3—C8—H8A 110.6
C4—C3—C2 116.9 (2) C9—C8—H8A 110.6
C4—C3—C7 122.2 (3) O3—C8—H8B 110.6
C2—C3—C7 120.9 (3) C9—C8—H8B 110.6
C5—C4—C3 120.9 (3) H8A—C8—H8B 108.8
C5—C4—H4A 119.5 C10—C9—C8 126.3 (3)
C3—C4—H4A 119.5 C10—C9—H9A 116.9
C4—C5—C6 122.0 (3) C8—C9—H9A 116.9
C4—C5—N 117.7 (2) C9—C10—Cl2 123.7 (2)
C6—C5—N 120.3 (2) C9—C10—Cl1 123.2 (2)
O3—C6—C1 124.9 (2) Cl2—C10—Cl1 113.06 (18)
C6—C1—C2—C3 0.3 (5) C8—O3—C6—C5 179.3 (2)
C1—C2—C3—C4 −1.3 (4) C2—C1—C6—O3 178.3 (3)
C1—C2—C3—C7 178.8 (3) C2—C1—C6—C5 0.7 (4)
C2—C3—C4—C5 1.2 (4) C4—C5—C6—O3 −178.6 (2)
C7—C3—C4—C5 −178.9 (3) N—C5—C6—O3 2.5 (4)
C3—C4—C5—C6 −0.2 (4) C4—C5—C6—C1 −0.8 (4)
C3—C4—C5—N 178.7 (3) N—C5—C6—C1 −179.7 (3)
O1—N—C5—C4 −140.1 (3) C6—O3—C8—C9 177.3 (2)
O2—N—C5—C4 38.8 (4) O3—C8—C9—C10 140.5 (3)
O1—N—C5—C6 38.9 (4) C8—C9—C10—Cl2 −1.1 (5)
O2—N—C5—C6 −142.3 (3) C8—C9—C10—Cl1 179.4 (2)
C8—O3—C6—C1 1.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O2i 0.93 2.59 3.241 (4) 127

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5235).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954. [DOI] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Walker, E. R., Leung, S. Y. & Barrett, A. G. M. (2005). Tetrahedron Lett. 46, 6537–6540.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023057/sj5235sup1.cif

e-68-o1929-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023057/sj5235Isup2.hkl

e-68-o1929-Isup2.hkl (103.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023057/sj5235Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES