Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1933. doi: 10.1107/S1600536812023719

4-(4-Nitro­styr­yl)-N,N-diphenyl­aniline

Zhi-Wen Zhang a, Yan-Qiu Liu a, Yu-Chao Zhu a, Jie-Ying Wu a,*
PMCID: PMC3379487  PMID: 22719685

Abstract

In the triaryl­amine group of the title compound, C26H20N2O2, the N atom adopts an approximately trigonal–planar geometry, lying 0.046 (5) Å from the plane P defined by its three neighbouring C atoms; the benzene and two terminal phenyl rings are twisted by 37.4 (1), 31.4 (1) and 47.8 (1)°, respectively from plane P. In the trans-stilbene fragment, the two benzene rings form a dihedral angle of 31.3 (1)°. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into ribbons in [100].

Related literature  

For a related structure, see: Yang et al. (2003). For background to push–pull chromophores, see: Marder et al. (1991); Reinhardt et al. (1998).graphic file with name e-68-o1933-scheme1.jpg

Experimental  

Crystal data  

  • C26H20N2O2

  • M r = 392.44

  • Monoclinic, Inline graphic

  • a = 8.4884 (3) Å

  • b = 8.9834 (3) Å

  • c = 27.0880 (8) Å

  • β = 96.500 (2)°

  • V = 2052.31 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.976, T max = 0.984

  • 7675 measured reflections

  • 3606 independent reflections

  • 2213 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.185

  • S = 1.04

  • 3606 reflections

  • 272 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023719/cv5302sup1.cif

e-68-o1933-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023719/cv5302Isup2.hkl

e-68-o1933-Isup2.hkl (176.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023719/cv5302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.58 3.481 (4) 162
C12—H12⋯O2ii 0.93 2.56 3.308 (4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 21071001 and 51142011), the Education Committee of Anhui Province (grant No. KJ2010A030) and the Natural Science Foundation of Anhui University (grant No. yqh100053).

supplementary crystallographic information

Comment

Push-pull chromophores are characterized by the conjugated linkage of an electron-donating group (D) and an electron-accepting group (A). Such molecules are potentially useful for nonlinear optical applications and many D-π-A type chromophores have been reported (Marder et al., 1991; Reinhardt et al., 1998). As a part of an ongoing study of such type chromophores, here we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related 4-(4-methoxystyryl)-N,N-diphenylaniline (Yang et al., 2003). The C = C double bond ( = 1.276 (4) Å) in the molecule adopts a trans-configuration. The dihedral angle between the benzene ring of the triarylamine group and another benzene ring linked by double bond is 31.34 (13) °. In the crystal, weak intermolecular C—H···O interactions (Table 1) link the molecules into ribbons in [100].

Experimental

2.73 g (10 mmol) of diethyl(4-nitrophenyl)methylphosphonate were put into a dry mortar, then 2.24 g (20 mmol) t-BuOK were placed into powder, a modicum of 18-crown-6 and 2.72 g (10 mmol) 4-(diphenylamino)benzaldehyde were adde and vigorously grinded. The mixture was monitored by TLC. After completion of the reaction the mixture was dissolved in 150 ml CH2Cl2 and washed with Di-water, the organic layer separated and dried over MgSO4,filterd and solvent removed in vacuo. The product was recrystallized from anhydrous ethanol, to give 2.12 g red acicular crystal. Yield, 54.1%. 1H NMR: (400 Hz, CDCl3), d(p.p.m.): 8.20(d, 2H, J = 8.4 Hz) 7.60(d, 2H, J=8.8 Hz) 7.40(d, 2H, J=8.8 Hz) 7.30–7.26(m, 4H) 7.19(s, 1H) 7.13(d, 4H, J=8.0) 7.09–7.03(m, 4H) 6.99(s, 1H) 13 C NMR (125 MHz, CDCl3) d (p.p.m.) 148.7, 147.8, 147.4, 146.5, 145.0, 144.5, 133.5, 133.0, 130.0 129.7, 129.5, 129.4, 128.2, 126.7, 126.5, 125.1, 124.8, 124.3, 123.8 123.6, 122.8, 122.3. IR (KBr, cm-1): 3029 1585 1514 1485 1335 1283 1175 1111 970 841 758 694. MS: m/z (%) = 504.20 (100)

Refinement

All hydrogen atoms were placed in geometrically idealized positions (C—H = 0.93 Å), and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C26H20N2O2 F(000) = 824
Mr = 392.44 Dx = 1.270 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1419 reflections
a = 8.4884 (3) Å θ = 2.4–21.1°
b = 8.9834 (3) Å µ = 0.08 mm1
c = 27.0880 (8) Å T = 298 K
β = 96.500 (2)° Red, block
V = 2052.31 (12) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3606 independent reflections
Radiation source: fine-focus sealed tube 2213 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
phi and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→10
Tmin = 0.976, Tmax = 0.984 k = −10→7
7675 measured reflections l = −32→32

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.4264P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3606 reflections Δρmax = 0.44 e Å3
272 parameters Δρmin = −0.20 e Å3
7 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0070 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1022 (4) 0.1217 (4) 1.06736 (14) 0.1466 (14)
O2 0.2236 (5) −0.0213 (4) 1.02338 (11) 0.1424 (13)
N1 0.4781 (2) 1.2271 (2) 0.81947 (8) 0.0608 (6)
N2 0.1826 (4) 0.1004 (4) 1.03580 (13) 0.0983 (10)
C1 0.3616 (3) 1.3187 (3) 0.78910 (9) 0.0553 (7)
C2 0.3483 (3) 1.4677 (3) 0.79922 (10) 0.0654 (7)
H2 0.4128 1.5106 0.8254 0.078*
C3 0.2364 (4) 1.5551 (4) 0.76972 (13) 0.0805 (9)
H3 0.2289 1.6559 0.7770 0.097*
C4 0.1355 (4) 1.4960 (5) 0.72958 (14) 0.0883 (10)
H4 0.0631 1.5566 0.7107 0.106*
C5 0.1463 (4) 1.3478 (4) 0.71906 (13) 0.0938 (11)
H5 0.0806 1.3053 0.6930 0.113*
C6 0.2598 (4) 1.2596 (3) 0.74862 (11) 0.0808 (9)
H6 0.2677 1.1590 0.7411 0.097*
C7 0.6385 (3) 1.2784 (3) 0.83323 (9) 0.0520 (6)
C8 0.7061 (3) 1.3620 (3) 0.80040 (11) 0.0685 (8)
H8 0.6519 1.3862 0.7697 0.082*
C9 0.8628 (4) 1.4119 (3) 0.81420 (15) 0.0855 (10)
H9 0.9097 1.4701 0.7915 0.103*
C10 0.9527 (4) 1.3801 (3) 0.85959 (15) 0.0848 (10)
H10 1.0551 1.4169 0.8667 0.102*
C11 0.8878 (4) 1.2964 (3) 0.89204 (12) 0.0769 (8)
H11 0.9441 1.2712 0.9224 0.092*
C12 0.7319 (3) 1.2467 (3) 0.87945 (10) 0.0638 (7)
H12 0.6861 1.1894 0.9026 0.077*
C13 0.4293 (3) 1.0942 (3) 0.83959 (9) 0.0550 (7)
C14 0.2812 (3) 1.0854 (3) 0.85408 (10) 0.0634 (7)
H14 0.2101 1.1638 0.8479 0.076*
C15 0.2386 (4) 0.9612 (3) 0.87764 (11) 0.0701 (8)
H15 0.1375 0.9567 0.8877 0.084*
C16 0.3393 (3) 0.8402 (3) 0.88742 (10) 0.0664 (7)
C17 0.4834 (3) 0.8447 (3) 0.87023 (11) 0.0679 (7)
H17 0.5512 0.7634 0.8746 0.081*
C18 0.5286 (3) 0.9702 (3) 0.84636 (11) 0.0667 (7)
H18 0.6272 0.9725 0.8345 0.080*
C19 0.2936 (4) 0.7155 (3) 0.91720 (11) 0.0761 (8)
H19 0.1950 0.7239 0.9288 0.091*
C20 0.3702 (4) 0.5964 (3) 0.92954 (11) 0.0729 (8)
H20 0.4687 0.5873 0.9180 0.088*
C21 0.3225 (3) 0.4725 (3) 0.95959 (10) 0.0640 (7)
C22 0.2273 (3) 0.4916 (3) 0.99516 (12) 0.0730 (8)
H22 0.1908 0.5861 1.0021 0.088*
C23 0.1839 (3) 0.3702 (4) 1.02138 (12) 0.0793 (9)
H23 0.1189 0.3830 1.0465 0.095*
C24 0.2349 (3) 0.2320 (3) 1.01095 (11) 0.0691 (8)
C25 0.3328 (4) 0.2112 (3) 0.97748 (11) 0.0768 (9)
H25 0.3709 0.1169 0.9711 0.092*
C26 0.3760 (4) 0.3325 (3) 0.95259 (11) 0.0752 (8)
H26 0.4469 0.3190 0.9292 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.102 (2) 0.178 (3) 0.165 (3) −0.0168 (19) 0.041 (2) 0.086 (2)
O2 0.225 (4) 0.0826 (19) 0.114 (2) −0.039 (2) −0.005 (2) 0.0338 (17)
N1 0.0531 (13) 0.0507 (13) 0.0774 (15) −0.0088 (10) 0.0022 (11) 0.0142 (11)
N2 0.093 (2) 0.103 (3) 0.093 (2) −0.029 (2) −0.0151 (18) 0.038 (2)
C1 0.0514 (15) 0.0541 (16) 0.0602 (15) −0.0067 (12) 0.0048 (12) 0.0089 (12)
C2 0.0701 (18) 0.0632 (19) 0.0639 (17) 0.0010 (14) 0.0119 (14) 0.0016 (14)
C3 0.077 (2) 0.076 (2) 0.093 (2) 0.0177 (17) 0.0258 (19) 0.0167 (18)
C4 0.0605 (19) 0.107 (3) 0.098 (3) 0.0091 (18) 0.0143 (18) 0.046 (2)
C5 0.079 (2) 0.110 (3) 0.086 (2) −0.025 (2) −0.0210 (18) 0.025 (2)
C6 0.089 (2) 0.0646 (19) 0.084 (2) −0.0166 (16) −0.0122 (18) 0.0074 (16)
C7 0.0505 (14) 0.0440 (14) 0.0622 (15) −0.0018 (11) 0.0101 (12) 0.0037 (12)
C8 0.0616 (17) 0.0667 (18) 0.0794 (19) 0.0054 (14) 0.0177 (15) 0.0196 (15)
C9 0.0581 (18) 0.072 (2) 0.131 (3) −0.0009 (15) 0.031 (2) 0.0299 (19)
C10 0.0476 (17) 0.069 (2) 0.136 (3) −0.0007 (15) 0.0042 (19) 0.010 (2)
C11 0.0645 (19) 0.076 (2) 0.086 (2) −0.0012 (16) −0.0068 (16) 0.0027 (17)
C12 0.0594 (16) 0.0646 (17) 0.0673 (17) −0.0032 (13) 0.0075 (13) 0.0034 (13)
C13 0.0568 (16) 0.0473 (15) 0.0599 (15) −0.0101 (12) 0.0029 (12) 0.0041 (11)
C14 0.0604 (17) 0.0576 (17) 0.0724 (18) −0.0102 (13) 0.0086 (14) 0.0010 (13)
C15 0.0655 (18) 0.0692 (19) 0.0760 (19) −0.0166 (15) 0.0093 (15) 0.0024 (15)
C16 0.0727 (16) 0.0654 (16) 0.0598 (16) −0.0262 (15) 0.0022 (13) 0.0002 (12)
C17 0.0739 (17) 0.0495 (16) 0.0790 (19) −0.0023 (13) 0.0024 (14) 0.0040 (13)
C18 0.0679 (18) 0.0557 (17) 0.0778 (18) −0.0030 (14) 0.0136 (14) 0.0061 (14)
C19 0.078 (2) 0.0675 (16) 0.080 (2) −0.0169 (13) −0.0011 (15) 0.0085 (14)
C20 0.081 (2) 0.0664 (16) 0.0682 (18) −0.0164 (13) −0.0052 (15) 0.0025 (13)
C21 0.0659 (17) 0.0672 (17) 0.0566 (16) −0.0140 (14) −0.0033 (14) 0.0054 (12)
C22 0.0665 (18) 0.0613 (18) 0.089 (2) 0.0021 (14) −0.0002 (16) 0.0082 (16)
C23 0.0585 (18) 0.094 (3) 0.085 (2) −0.0007 (17) 0.0104 (16) 0.0212 (19)
C24 0.0645 (18) 0.072 (2) 0.0670 (18) −0.0163 (16) −0.0075 (15) 0.0249 (15)
C25 0.103 (2) 0.0576 (18) 0.0674 (18) −0.0071 (16) −0.0012 (18) 0.0044 (15)
C26 0.095 (2) 0.068 (2) 0.0633 (17) −0.0131 (17) 0.0124 (16) −0.0006 (15)

Geometric parameters (Å, º)

O1—N2 1.168 (4) C12—H12 0.9300
O2—N2 1.207 (4) C13—C14 1.361 (4)
N1—C13 1.395 (3) C13—C18 1.397 (4)
N1—C7 1.445 (3) C14—C15 1.355 (4)
N1—C1 1.465 (3) C14—H14 0.9300
N2—C24 1.454 (4) C15—C16 1.390 (4)
C1—C2 1.373 (4) C15—H15 0.9300
C1—C6 1.420 (4) C16—C17 1.358 (4)
C2—C3 1.409 (4) C16—C19 1.458 (4)
C2—H2 0.9300 C17—C18 1.375 (4)
C3—C4 1.410 (5) C17—H17 0.9300
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.367 (5) C19—C20 1.276 (4)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.422 (4) C20—C21 1.463 (4)
C5—H5 0.9300 C20—H20 0.9300
C6—H6 0.9300 C21—C22 1.337 (4)
C7—C8 1.342 (3) C21—C26 1.358 (4)
C7—C12 1.433 (4) C22—C23 1.374 (4)
C8—C9 1.413 (4) C22—H22 0.9300
C8—H8 0.9300 C23—C24 1.356 (4)
C9—C10 1.401 (5) C23—H23 0.9300
C9—H9 0.9300 C24—C25 1.310 (4)
C10—C11 1.323 (4) C25—C26 1.354 (4)
C10—H10 0.9300 C25—H25 0.9300
C11—C12 1.402 (4) C26—H26 0.9300
C11—H11 0.9300
C13—N1—C7 119.0 (2) C14—C13—N1 119.2 (2)
C13—N1—C1 119.2 (2) C14—C13—C18 118.6 (2)
C7—N1—C1 121.44 (19) N1—C13—C18 122.2 (2)
O1—N2—O2 124.3 (4) C15—C14—C13 119.2 (3)
O1—N2—C24 116.1 (4) C15—C14—H14 120.4
O2—N2—C24 119.6 (4) C13—C14—H14 120.4
C2—C1—C6 117.5 (3) C14—C15—C16 122.9 (3)
C2—C1—N1 120.0 (2) C14—C15—H15 118.6
C6—C1—N1 122.5 (2) C16—C15—H15 118.6
C1—C2—C3 119.7 (3) C17—C16—C15 118.0 (3)
C1—C2—H2 120.1 C17—C16—C19 121.3 (3)
C3—C2—H2 120.1 C15—C16—C19 120.6 (3)
C2—C3—C4 122.6 (3) C16—C17—C18 119.7 (3)
C2—C3—H3 118.7 C16—C17—H17 120.1
C4—C3—H3 118.7 C18—C17—H17 120.1
C5—C4—C3 118.6 (3) C17—C18—C13 121.3 (3)
C5—C4—H4 120.7 C17—C18—H18 119.4
C3—C4—H4 120.7 C13—C18—H18 119.4
C4—C5—C6 118.8 (3) C20—C19—C16 129.0 (3)
C4—C5—H5 120.6 C20—C19—H19 115.5
C6—C5—H5 120.6 C16—C19—H19 115.5
C1—C6—C5 122.7 (3) C19—C20—C21 128.2 (3)
C1—C6—H6 118.6 C19—C20—H20 115.9
C5—C6—H6 118.6 C21—C20—H20 115.9
C8—C7—C12 117.0 (2) C22—C21—C26 117.3 (3)
C8—C7—N1 118.0 (2) C22—C21—C20 122.1 (3)
C12—C7—N1 125.0 (2) C26—C21—C20 120.6 (3)
C7—C8—C9 117.6 (3) C21—C22—C23 119.4 (3)
C7—C8—H8 121.2 C21—C22—H22 120.3
C9—C8—H8 121.2 C23—C22—H22 120.3
C10—C9—C8 124.7 (3) C24—C23—C22 120.6 (3)
C10—C9—H9 117.6 C24—C23—H23 119.7
C8—C9—H9 117.6 C22—C23—H23 119.7
C11—C10—C9 118.2 (3) C25—C24—C23 121.2 (3)
C11—C10—H10 120.9 C25—C24—N2 117.1 (3)
C9—C10—H10 120.9 C23—C24—N2 121.8 (3)
C10—C11—C12 118.2 (3) C24—C25—C26 117.3 (3)
C10—C11—H11 120.9 C24—C25—H25 121.4
C12—C11—H11 120.9 C26—C25—H25 121.4
C11—C12—C7 124.3 (3) C25—C26—C21 124.2 (3)
C11—C12—H12 117.9 C25—C26—H26 117.9
C7—C12—H12 117.9 C21—C26—H26 117.9
C13—N1—C1—C2 129.1 (3) C18—C13—C14—C15 4.5 (4)
C7—N1—C1—C2 −44.5 (3) C13—C14—C15—C16 −0.7 (4)
C13—N1—C1—C6 −51.1 (3) C14—C15—C16—C17 −3.4 (4)
C7—N1—C1—C6 135.3 (3) C14—C15—C16—C19 173.8 (3)
C6—C1—C2—C3 0.0 (4) C15—C16—C17—C18 3.5 (4)
N1—C1—C2—C3 179.7 (2) C19—C16—C17—C18 −173.8 (3)
C1—C2—C3—C4 0.1 (4) C16—C17—C18—C13 0.4 (4)
C2—C3—C4—C5 0.3 (5) C14—C13—C18—C17 −4.5 (4)
C3—C4—C5—C6 −0.6 (5) N1—C13—C18—C17 174.2 (2)
C2—C1—C6—C5 −0.4 (4) C17—C16—C19—C20 −3.1 (5)
N1—C1—C6—C5 179.9 (3) C15—C16—C19—C20 179.7 (3)
C4—C5—C6—C1 0.7 (5) C16—C19—C20—C21 179.8 (3)
C13—N1—C7—C8 151.6 (2) C19—C20—C21—C22 −29.6 (5)
C1—N1—C7—C8 −34.8 (3) C19—C20—C21—C26 151.3 (3)
C13—N1—C7—C12 −28.3 (4) C26—C21—C22—C23 −2.3 (4)
C1—N1—C7—C12 145.3 (2) C20—C21—C22—C23 178.6 (3)
C12—C7—C8—C9 −0.2 (4) C21—C22—C23—C24 −0.9 (4)
N1—C7—C8—C9 179.9 (2) C22—C23—C24—C25 3.4 (5)
C7—C8—C9—C10 0.2 (5) C22—C23—C24—N2 −175.9 (3)
C8—C9—C10—C11 0.6 (5) O1—N2—C24—C25 176.1 (3)
C9—C10—C11—C12 −1.2 (5) O2—N2—C24—C25 −3.6 (5)
C10—C11—C12—C7 1.1 (4) O1—N2—C24—C23 −4.6 (5)
C8—C7—C12—C11 −0.4 (4) O2—N2—C24—C23 175.7 (3)
N1—C7—C12—C11 179.5 (2) C23—C24—C25—C26 −2.3 (5)
C7—N1—C13—C14 139.6 (3) N2—C24—C25—C26 177.0 (3)
C1—N1—C13—C14 −34.2 (3) C24—C25—C26—C21 −1.2 (5)
C7—N1—C13—C18 −39.1 (4) C22—C21—C26—C25 3.5 (4)
C1—N1—C13—C18 147.1 (3) C20—C21—C26—C25 −177.4 (3)
N1—C13—C14—C15 −174.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1i 0.93 2.58 3.481 (4) 162
C12—H12···O2ii 0.93 2.56 3.308 (4) 138

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5302).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Marder, S. R., Beratan, D. N. & Cheng, L.-T. (1991). Science, 252, 103–106. [DOI] [PubMed]
  3. Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G. & Bhatt, J. C. (1998). Chem. Mater. 10, 1863–1874.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yang, J.-S., Wang, C.-M., Hwang, C.-Y., Liau, K.-L. & Chiou, S.-Y. (2003). Photochem. Photobiol. Sci. 2, 1225–1231. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023719/cv5302sup1.cif

e-68-o1933-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023719/cv5302Isup2.hkl

e-68-o1933-Isup2.hkl (176.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023719/cv5302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES