Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1934–o1935. doi: 10.1107/S1600536812023021

2-Amino-4-(4-fluoro­phen­yl)-6-meth­oxy-4H-benzo[h]chromene-3-carbonitrile

Al-Anood M Al-Dies a, Abdel-Galil E Amr b,c, Ahmed M El-Agrody a, Tze Shyang Chia d, Hoong-Kun Fun d,*,
PMCID: PMC3379488  PMID: 22719686

Abstract

In the title mol­ecule, C21H15FN2O2, the dihedral angle between the fluoro-substituted benzene ring and the mean plane of the 4H-benzo[h]chromene ring system [maximum deviation = 0.109 (2) Å] is 83.35 (7)°. The pyran ring adopts a slight sofa conformation with the tertiary C(H) atom forming the flap. The meth­oxy group is slightly twisted from the attached benzene ring of the 4H-benzo[h]chromene moiety [C—O—C—C = −4.3 (3)°]. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into infinite wave-like chains along the b axis. The crystal packing is further stabilized by π–π inter­actions [centroid–centroid distance = 3.7713 (9) Å].

Related literature  

For the synthesis of 4H-chromene derivatives, see: Sayed et al. (2000); Bedair et al. (2001); El-Agrody et al. (2000, 2002). For the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: El-Agrody et al. (2000); Abd-El-Aziz et al. (2004, 2007); Sabry et al. (2011). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o1934-scheme1.jpg

Experimental  

Crystal data  

  • C21H15FN2O2

  • M r = 346.35

  • Monoclinic, Inline graphic

  • a = 12.6336 (4) Å

  • b = 11.9333 (3) Å

  • c = 12.0471 (4) Å

  • β = 113.581 (2)°

  • V = 1664.56 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.88 × 0.68 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.537, T max = 0.953

  • 11390 measured reflections

  • 3199 independent reflections

  • 2770 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.132

  • S = 1.05

  • 3199 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023021/lh5476sup1.cif

e-68-o1934-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023021/lh5476Isup2.hkl

e-68-o1934-Isup2.hkl (157KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023021/lh5476Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯N2i 0.89 (2) 2.17 (2) 3.054 (2) 175 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-172.

supplementary crystallographic information

Comment

In our previous work, we have reported the synthesis of 4H-chromene derivatives using α-cyanocinnamonitriles and ethyl α-cyanocinnamates (Sayed et al., 2000; Bedair et al., 2001; El-Agrody et al., 2000, 2002), study of their characterization and evaluation of their antimicrobial and antitumor activities. In continuation of our interest in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives (El-Agrody et al., 2000; Abd-El-Aziz et al., 2004, 2007; Sabry et al., 2011), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The fluoro-substituted benzene ring (C14–C19) is approximately perpendicular to the 4H-benzo[h]chromene ring system [O1/C1–C13, maximum deviation = 0.109 (2) Å at atom C3] as indicated by the dihedral angle of 83.35 (7)°. The pyran ring (O1/C1–C5) adopts slight sofa conformation [puckering parameters (Cremer & Pople, 1975), Q = 0.0980 (16) Å, θ = 69.5 (9)° and φ = 167.7 (10)°] with C3 as the flap atom. The methoxy group (C20/O2) is slightly twisted from the attached benzene ring (C4–C6/C11–C13) of the 4H-benzo[h]chromene moiety with torsion angle C20—O2—C12—C13 of -4.3 (3)°.

In the crystal (Fig. 2), molecules are linked by intermolecular N1—H2N1···N2i hydrogen bonds (Table 1) into infinite wave-like chains along b axis. The crystal packing is further stabilized by π–π interaction with Cg1-Cg1 distance of 3.7713 (9) Å, where Cg1 is the centroid of O1/C1–C5 ring [symmetry code: 1-x, 1-y, -z].

Experimental

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with α-cyano-p-fluorocinnamonitrile (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred (reaction time: 60 min). The solid product formed was collected by filtration and recrystallized from ethanol to give the title compound. M.p.: 493–494 K.

Refinement

The atoms H2N1 and H1N1 were located in a difference fourier map and refined freely [N—H = 0.89 (2) and 0.90 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C21H15FN2O2 F(000) = 720
Mr = 346.35 Dx = 1.382 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 3014 reflections
a = 12.6336 (4) Å θ = 3.8–71.5°
b = 11.9333 (3) Å µ = 0.81 mm1
c = 12.0471 (4) Å T = 296 K
β = 113.581 (2)° Plate, yellow
V = 1664.56 (9) Å3 0.88 × 0.68 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3199 independent reflections
Radiation source: fine-focus sealed tube 2770 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
φ and ω scans θmax = 71.9°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.537, Tmax = 0.953 k = −12→14
11390 measured reflections l = −12→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.3162P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3199 reflections Δρmax = 0.22 e Å3
245 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0030 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.08340 (11) 0.92571 (13) 0.19221 (15) 0.0946 (5)
O1 0.59888 (10) 0.46944 (9) 0.14761 (10) 0.0507 (3)
O2 0.85128 (13) 0.37355 (11) −0.12356 (13) 0.0677 (4)
N1 0.52279 (14) 0.57508 (14) 0.24812 (14) 0.0569 (4)
N2 0.58458 (15) 0.85793 (13) 0.21110 (16) 0.0666 (4)
C1 0.58225 (13) 0.57477 (13) 0.17674 (13) 0.0442 (3)
C2 0.62297 (13) 0.66625 (13) 0.13969 (13) 0.0439 (3)
C3 0.68193 (12) 0.66037 (12) 0.05215 (13) 0.0416 (3)
H3A 0.6274 0.6888 −0.0262 0.050*
C4 0.70666 (12) 0.53883 (12) 0.03481 (12) 0.0412 (3)
C5 0.66493 (12) 0.45325 (12) 0.07952 (13) 0.0422 (3)
C6 0.68132 (12) 0.33927 (13) 0.05802 (13) 0.0437 (3)
C7 0.63629 (15) 0.24988 (14) 0.10278 (16) 0.0541 (4)
H7A 0.5972 0.2650 0.1522 0.065*
C8 0.64953 (19) 0.14210 (15) 0.07431 (19) 0.0656 (5)
H8A 0.6191 0.0841 0.1040 0.079*
C9 0.70845 (18) 0.11761 (15) 0.00090 (19) 0.0683 (5)
H9A 0.7161 0.0435 −0.0187 0.082*
C10 0.75491 (17) 0.20137 (15) −0.04230 (17) 0.0592 (4)
H10A 0.7947 0.1839 −0.0904 0.071*
C11 0.74309 (13) 0.31434 (13) −0.01470 (14) 0.0466 (4)
C12 0.78985 (14) 0.40492 (14) −0.05799 (14) 0.0490 (4)
C13 0.77181 (13) 0.51312 (13) −0.03431 (14) 0.0469 (4)
H13A 0.8026 0.5710 −0.0638 0.056*
C14 0.79036 (13) 0.73268 (12) 0.09176 (13) 0.0433 (3)
C15 0.80585 (16) 0.80610 (15) 0.01145 (16) 0.0573 (4)
H15A 0.7487 0.8125 −0.0664 0.069*
C16 0.90543 (18) 0.87111 (17) 0.04453 (19) 0.0682 (5)
H16A 0.9157 0.9203 −0.0102 0.082*
C17 0.98691 (16) 0.86051 (16) 0.15903 (19) 0.0629 (5)
C18 0.97531 (16) 0.78960 (18) 0.24158 (19) 0.0675 (5)
H18A 1.0327 0.7844 0.3194 0.081*
C19 0.87556 (15) 0.72490 (15) 0.20702 (16) 0.0567 (4)
H19A 0.8663 0.6758 0.2624 0.068*
C20 0.8921 (2) 0.46109 (19) −0.1767 (2) 0.0726 (6)
H20A 0.9294 0.4291 −0.2248 0.109*
H20B 0.9463 0.5066 −0.1139 0.109*
H20C 0.8282 0.5064 −0.2271 0.109*
C21 0.60126 (14) 0.77220 (13) 0.17819 (14) 0.0479 (4)
H2N1 0.4932 (18) 0.510 (2) 0.2566 (19) 0.065 (6)*
H1N1 0.4912 (19) 0.642 (2) 0.251 (2) 0.073 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0660 (7) 0.0911 (9) 0.1290 (11) −0.0335 (7) 0.0416 (7) −0.0317 (8)
O1 0.0622 (7) 0.0378 (6) 0.0650 (7) −0.0010 (5) 0.0391 (5) −0.0020 (5)
O2 0.0845 (9) 0.0567 (8) 0.0838 (9) 0.0070 (6) 0.0566 (7) −0.0061 (6)
N1 0.0703 (9) 0.0447 (8) 0.0724 (9) −0.0022 (7) 0.0461 (8) −0.0035 (7)
N2 0.0771 (10) 0.0491 (9) 0.0787 (10) 0.0032 (7) 0.0364 (8) −0.0149 (7)
C1 0.0464 (7) 0.0404 (8) 0.0472 (8) 0.0021 (6) 0.0202 (6) −0.0029 (6)
C2 0.0450 (7) 0.0399 (8) 0.0486 (8) 0.0018 (6) 0.0206 (6) −0.0025 (6)
C3 0.0441 (7) 0.0378 (7) 0.0420 (7) 0.0014 (6) 0.0162 (6) 0.0007 (6)
C4 0.0429 (7) 0.0383 (7) 0.0411 (7) 0.0010 (5) 0.0155 (6) −0.0019 (6)
C5 0.0444 (7) 0.0390 (7) 0.0440 (7) 0.0017 (6) 0.0185 (6) −0.0025 (6)
C6 0.0433 (7) 0.0392 (8) 0.0443 (7) 0.0030 (6) 0.0131 (6) −0.0014 (6)
C7 0.0605 (9) 0.0427 (8) 0.0615 (9) 0.0019 (7) 0.0269 (8) 0.0031 (7)
C8 0.0794 (12) 0.0396 (9) 0.0821 (12) 0.0006 (8) 0.0366 (10) 0.0040 (8)
C9 0.0804 (13) 0.0379 (9) 0.0857 (13) 0.0083 (8) 0.0322 (10) −0.0052 (9)
C10 0.0653 (10) 0.0477 (9) 0.0664 (10) 0.0085 (8) 0.0283 (8) −0.0084 (8)
C11 0.0460 (8) 0.0428 (8) 0.0471 (8) 0.0058 (6) 0.0146 (6) −0.0042 (6)
C12 0.0494 (8) 0.0503 (9) 0.0499 (8) 0.0046 (7) 0.0227 (6) −0.0053 (7)
C13 0.0506 (8) 0.0447 (8) 0.0488 (8) −0.0014 (6) 0.0234 (6) −0.0021 (6)
C14 0.0455 (7) 0.0367 (7) 0.0509 (8) 0.0004 (6) 0.0227 (6) −0.0051 (6)
C15 0.0639 (10) 0.0539 (10) 0.0538 (9) −0.0093 (8) 0.0232 (8) 0.0002 (7)
C16 0.0781 (13) 0.0595 (11) 0.0786 (12) −0.0178 (9) 0.0434 (11) −0.0029 (9)
C17 0.0534 (9) 0.0539 (10) 0.0883 (13) −0.0127 (8) 0.0357 (9) −0.0207 (9)
C18 0.0507 (10) 0.0709 (12) 0.0684 (11) −0.0004 (8) 0.0107 (8) −0.0124 (9)
C19 0.0566 (9) 0.0543 (10) 0.0550 (9) −0.0006 (7) 0.0180 (7) 0.0028 (7)
C20 0.0858 (14) 0.0711 (13) 0.0848 (13) −0.0002 (10) 0.0591 (12) −0.0052 (10)
C21 0.0510 (8) 0.0442 (9) 0.0516 (8) −0.0004 (6) 0.0237 (7) −0.0039 (7)

Geometric parameters (Å, º)

F1—C17 1.364 (2) C8—C9 1.396 (3)
O1—C1 1.3440 (18) C8—H8A 0.9300
O1—C5 1.3979 (18) C9—C10 1.364 (3)
O2—C12 1.3627 (19) C9—H9A 0.9300
O2—C20 1.425 (2) C10—C11 1.411 (2)
N1—C1 1.349 (2) C10—H10A 0.9300
N1—H2N1 0.89 (2) C11—C12 1.427 (2)
N1—H1N1 0.90 (2) C12—C13 1.361 (2)
N2—C21 1.147 (2) C13—H13A 0.9300
C1—C2 1.356 (2) C14—C15 1.376 (2)
C2—C21 1.411 (2) C14—C19 1.378 (2)
C2—C3 1.517 (2) C15—C16 1.394 (3)
C3—C4 1.516 (2) C15—H15A 0.9300
C3—C14 1.525 (2) C16—C17 1.357 (3)
C3—H3A 0.9800 C16—H16A 0.9300
C4—C5 1.356 (2) C17—C18 1.358 (3)
C4—C13 1.419 (2) C18—C19 1.392 (3)
C5—C6 1.415 (2) C18—H18A 0.9300
C6—C7 1.413 (2) C19—H19A 0.9300
C6—C11 1.418 (2) C20—H20A 0.9600
C7—C8 1.359 (3) C20—H20B 0.9600
C7—H7A 0.9300 C20—H20C 0.9600
C1—O1—C5 118.35 (12) C9—C10—H10A 119.7
C12—O2—C20 116.83 (14) C11—C10—H10A 119.7
C1—N1—H2N1 115.9 (14) C10—C11—C6 118.83 (15)
C1—N1—H1N1 113.3 (15) C10—C11—C12 122.65 (15)
H2N1—N1—H1N1 124.2 (19) C6—C11—C12 118.51 (14)
O1—C1—N1 110.73 (14) C13—C12—O2 124.33 (15)
O1—C1—C2 123.18 (13) C13—C12—C11 120.91 (14)
N1—C1—C2 126.07 (15) O2—C12—C11 114.76 (14)
C1—C2—C21 117.63 (13) C12—C13—C4 120.87 (15)
C1—C2—C3 123.24 (13) C12—C13—H13A 119.6
C21—C2—C3 118.96 (13) C4—C13—H13A 119.6
C4—C3—C2 109.01 (12) C15—C14—C19 118.55 (15)
C4—C3—C14 112.07 (12) C15—C14—C3 120.19 (14)
C2—C3—C14 112.70 (12) C19—C14—C3 121.25 (14)
C4—C3—H3A 107.6 C14—C15—C16 121.29 (17)
C2—C3—H3A 107.6 C14—C15—H15A 119.4
C14—C3—H3A 107.6 C16—C15—H15A 119.4
C5—C4—C13 118.64 (14) C17—C16—C15 118.01 (18)
C5—C4—C3 122.12 (13) C17—C16—H16A 121.0
C13—C4—C3 119.19 (13) C15—C16—H16A 121.0
C4—C5—O1 123.18 (13) C16—C17—C18 122.84 (17)
C4—C5—C6 122.86 (14) C16—C17—F1 118.04 (19)
O1—C5—C6 113.93 (13) C18—C17—F1 119.11 (19)
C7—C6—C5 123.01 (14) C17—C18—C19 118.47 (17)
C7—C6—C11 118.83 (14) C17—C18—H18A 120.8
C5—C6—C11 118.13 (14) C19—C18—H18A 120.8
C8—C7—C6 120.61 (17) C14—C19—C18 120.84 (17)
C8—C7—H7A 119.7 C14—C19—H19A 119.6
C6—C7—H7A 119.7 C18—C19—H19A 119.6
C7—C8—C9 120.59 (18) O2—C20—H20A 109.5
C7—C8—H8A 119.7 O2—C20—H20B 109.5
C9—C8—H8A 119.7 H20A—C20—H20B 109.5
C10—C9—C8 120.56 (16) O2—C20—H20C 109.5
C10—C9—H9A 119.7 H20A—C20—H20C 109.5
C8—C9—H9A 119.7 H20B—C20—H20C 109.5
C9—C10—C11 120.55 (17) N2—C21—C2 179.06 (19)
C5—O1—C1—N1 −176.40 (13) C9—C10—C11—C12 −179.82 (17)
C5—O1—C1—C2 2.4 (2) C7—C6—C11—C10 1.6 (2)
O1—C1—C2—C21 −178.96 (14) C5—C6—C11—C10 −176.68 (14)
N1—C1—C2—C21 −0.3 (2) C7—C6—C11—C12 −179.03 (14)
O1—C1—C2—C3 5.8 (2) C5—C6—C11—C12 2.7 (2)
N1—C1—C2—C3 −175.55 (15) C20—O2—C12—C13 −4.3 (3)
C1—C2—C3—C4 −10.64 (19) C20—O2—C12—C11 175.28 (16)
C21—C2—C3—C4 174.21 (13) C10—C11—C12—C13 176.76 (16)
C1—C2—C3—C14 −135.72 (15) C6—C11—C12—C13 −2.6 (2)
C21—C2—C3—C14 49.13 (18) C10—C11—C12—O2 −2.8 (2)
C2—C3—C4—C5 8.57 (19) C6—C11—C12—O2 177.82 (14)
C14—C3—C4—C5 134.03 (14) O2—C12—C13—C4 179.97 (14)
C2—C3—C4—C13 −173.90 (12) C11—C12—C13—C4 0.4 (2)
C14—C3—C4—C13 −48.44 (17) C5—C4—C13—C12 1.6 (2)
C13—C4—C5—O1 −179.35 (13) C3—C4—C13—C12 −176.02 (14)
C3—C4—C5—O1 −1.8 (2) C4—C3—C14—C15 106.56 (16)
C13—C4—C5—C6 −1.4 (2) C2—C3—C14—C15 −130.03 (15)
C3—C4—C5—C6 176.10 (13) C4—C3—C14—C19 −72.26 (18)
C1—O1—C5—C4 −4.4 (2) C2—C3—C14—C19 51.14 (19)
C1—O1—C5—C6 177.49 (12) C19—C14—C15—C16 0.4 (3)
C4—C5—C6—C7 −178.91 (15) C3—C14—C15—C16 −178.43 (16)
O1—C5—C6—C7 −0.8 (2) C14—C15—C16—C17 −0.4 (3)
C4—C5—C6—C11 −0.7 (2) C15—C16—C17—C18 0.1 (3)
O1—C5—C6—C11 177.36 (12) C15—C16—C17—F1 −178.75 (17)
C5—C6—C7—C8 176.61 (16) C16—C17—C18—C19 0.1 (3)
C11—C6—C7—C8 −1.6 (2) F1—C17—C18—C19 178.99 (16)
C6—C7—C8—C9 0.4 (3) C15—C14—C19—C18 −0.2 (3)
C7—C8—C9—C10 0.8 (3) C3—C14—C19—C18 178.68 (15)
C8—C9—C10—C11 −0.7 (3) C17—C18—C19—C14 −0.1 (3)
C9—C10—C11—C6 −0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H2N1···N2i 0.89 (2) 2.17 (2) 3.054 (2) 175 (2)

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5476).

References

  1. Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.
  2. Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.
  3. Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R. & El-Agrody, A. M. (2001). Farmaco, 56, 965–973. [DOI] [PubMed]
  4. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. El-Agrody, A. M., Eid, F. A., Emam, H. A., Mohamed, H. M. & Bedair, A. H. (2002). Z. Naturforsch. Teil B, 57, 579–585.
  7. El-Agrody, A. M., El-Hakim, M. H., Abd El-Latif, M. S., Fakery, A. H., El-Sayed, E. S. M. & El-Ghareab, K. A. (2000). Acta Pharm. 50, 111–120.
  8. Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772. [DOI] [PubMed]
  9. Sayed, A. Z., El-Hady, N. A. & El-Agrody, A. M. (2000). J. Chem. Res. 2000, 164–166.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023021/lh5476sup1.cif

e-68-o1934-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023021/lh5476Isup2.hkl

e-68-o1934-Isup2.hkl (157KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023021/lh5476Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES