Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1936. doi: 10.1107/S1600536812023902

2-Chloro-N-(2-methyl­phen­yl)benzamide

Vinola Z Rodrigues a, B Thimme Gowda a,*, Július Sivý b, Viktor Vrábel c, Jozef Kožíšek d
PMCID: PMC3379489  PMID: 22719687

Abstract

In the title compound, C14H12ClNO, the two aromatic rings are almost coplanar, making a dihedral angle of 4.08 (18)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the a axis.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2012); Saeed et al. (2010) of N-chloro­aryl­amides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and of N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983); Usha & Gowda (2006).graphic file with name e-68-o1936-scheme1.jpg

Experimental  

Crystal data  

  • C14H12ClNO

  • M r = 245.70

  • Orthorhombic, Inline graphic

  • a = 9.746 (3) Å

  • b = 6.077 (3) Å

  • c = 20.797 (7) Å

  • V = 1231.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.55 × 0.40 × 0.25 mm

Data collection  

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.865, T max = 0.921

  • 16249 measured reflections

  • 2173 independent reflections

  • 1369 reflections with I > 2σ(I)

  • R int = 0.097

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.147

  • S = 1.10

  • 2173 reflections

  • 158 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1054 Friedel pairs

  • Flack parameter: 0.37 (13)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023902/bt5935sup1.cif

e-68-o1936-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023902/bt5935Isup2.hkl

e-68-o1936-Isup2.hkl (106.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023902/bt5935Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.00 (1) 2.853 (5) 171 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the Grant Agencies for their financial support [VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10)] and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2012; Saeed et al., 2010), N-chloroarylsulfonamides(Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoarylsulfonamides(Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(2-methylphenyl)benzamide has been determined (Fig.1).

In the title compound, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, similar to that observed in 2-chloro-N-(3-methylphenyl)benzamide (I) (Rodrigues et al., 2012). The ortho-methyl group in the anilino ring is also positioned syn to the N—H bond, in contrast to the anti conformation observed between the meta-methyl group and the N—H bond in (I).

The central amide core –NH—C(=O)– group is twisted by 58.77 (27)° and 56.30 (28)° out of the planes of the 2-chlorophenyl and 2-methylphenyl rings, respectively, while the two aromatic rings make only a dihedral angle of 4.08 (18)°, compared to the value of 38.7 (1)° in (I)

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by the method similar to the one described by Gowda et al. (2000). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was visible in a difference map and refined with the N—H distance restrained to 0.860 (2) Å. The Uiso(H) values were set at 1.2Ueq (C-aromatic) or 1.5Ueq (C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular links along a-axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms have been omitted for clarity.

Crystal data

C14H12ClNO F(000) = 512
Mr = 245.70 Dx = 1.325 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2182 reflections
a = 9.746 (3) Å θ = 3.5–25.0°
b = 6.077 (3) Å µ = 0.29 mm1
c = 20.797 (7) Å T = 295 K
V = 1231.8 (8) Å3 Plate, colourless
Z = 4 0.55 × 0.40 × 0.25 mm

Data collection

Xcalibur, Ruby, Gemini diffractometer 2173 independent reflections
Radiation source: fine-focus sealed tube 1369 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.097
Detector resolution: 10.434 pixels mm-1 θmax = 25.0°, θmin = 3.5°
ω scans h = −11→11
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] k = −7→7
Tmin = 0.865, Tmax = 0.921 l = −24→24
16249 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.058P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2173 reflections Δρmax = 0.22 e Å3
158 parameters Δρmin = −0.14 e Å3
2 restraints Absolute structure: Flack (1983), 1054 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.37 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5638 (4) 0.6837 (8) 0.4527 (3) 0.0506 (12)
C2 0.5037 (4) 0.5445 (10) 0.3997 (2) 0.0497 (14)
C3 0.5364 (4) 0.5696 (9) 0.3373 (3) 0.0596 (15)
C4 0.4845 (7) 0.4319 (12) 0.2916 (3) 0.0833 (19)
H4A 0.5099 0.4492 0.2488 0.100*
C5 0.3941 (6) 0.2667 (12) 0.3087 (5) 0.0850 (17)
H5A 0.3587 0.1723 0.2777 0.102*
C6 0.3578 (5) 0.2439 (10) 0.3713 (4) 0.0784 (17)
H6A 0.2968 0.1338 0.3834 0.094*
C7 0.4101 (4) 0.3811 (10) 0.4159 (3) 0.0644 (16)
H7A 0.3830 0.3660 0.4585 0.077*
C8 0.5196 (4) 0.9375 (9) 0.5395 (3) 0.0552 (14)
C9 0.4657 (5) 0.9069 (10) 0.6004 (3) 0.0646 (16)
C10 0.5118 (6) 1.0562 (13) 0.6480 (3) 0.0815 (18)
H10A 0.4756 1.0470 0.6893 0.098*
C11 0.6062 (7) 1.2098 (13) 0.6351 (4) 0.096 (3)
H11A 0.6403 1.2963 0.6684 0.115*
C12 0.6535 (5) 1.2420 (9) 0.5735 (4) 0.0813 (19)
H12A 0.7152 1.3549 0.5647 0.098*
C13 0.6101 (4) 1.1096 (10) 0.5260 (3) 0.0679 (17)
H13A 0.6402 1.1324 0.4841 0.082*
C14 0.3642 (5) 0.7289 (9) 0.6169 (3) 0.0664 (16)
H14C 0.3400 0.7395 0.6615 0.100*
H14B 0.4044 0.5875 0.6086 0.100*
H14A 0.2833 0.7461 0.5910 0.100*
N1 0.4759 (4) 0.7929 (8) 0.4882 (2) 0.0611 (12)
H1 0.3902 (14) 0.785 (9) 0.479 (3) 0.070 (17)*
O1 0.6897 (3) 0.6844 (6) 0.46020 (18) 0.0739 (11)
Cl1 0.64973 (16) 0.7710 (3) 0.31282 (10) 0.0971 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (2) 0.046 (3) 0.063 (3) 0.001 (2) −0.005 (2) −0.001 (3)
C2 0.029 (2) 0.071 (4) 0.049 (3) 0.006 (2) −0.002 (2) −0.002 (2)
C3 0.044 (3) 0.076 (4) 0.059 (4) 0.006 (2) 0.000 (3) −0.003 (3)
C4 0.088 (4) 0.102 (6) 0.060 (4) 0.024 (4) −0.003 (3) −0.011 (4)
C5 0.076 (4) 0.082 (4) 0.097 (5) 0.004 (3) −0.012 (4) −0.035 (4)
C6 0.064 (4) 0.078 (5) 0.093 (5) −0.010 (3) −0.004 (3) −0.020 (4)
C7 0.042 (3) 0.081 (4) 0.070 (4) −0.004 (2) 0.001 (2) −0.004 (3)
C8 0.036 (2) 0.063 (4) 0.067 (4) 0.010 (3) −0.011 (3) −0.017 (3)
C9 0.054 (3) 0.074 (4) 0.066 (4) 0.020 (3) −0.015 (3) −0.011 (4)
C10 0.065 (3) 0.114 (6) 0.065 (4) 0.020 (4) −0.002 (3) −0.010 (4)
C11 0.090 (5) 0.104 (6) 0.094 (6) 0.015 (4) −0.028 (4) −0.049 (5)
C12 0.061 (3) 0.067 (4) 0.116 (6) 0.001 (3) −0.015 (3) −0.023 (4)
C13 0.046 (3) 0.077 (5) 0.080 (4) 0.002 (3) −0.003 (3) −0.006 (4)
C14 0.059 (3) 0.069 (4) 0.071 (4) −0.001 (3) −0.006 (2) 0.015 (3)
N1 0.039 (2) 0.082 (3) 0.062 (3) 0.002 (2) −0.005 (2) 0.002 (3)
O1 0.0306 (15) 0.100 (3) 0.091 (2) 0.0024 (15) −0.0065 (16) −0.020 (2)
Cl1 0.0948 (11) 0.1063 (14) 0.0900 (10) −0.0151 (10) 0.0021 (11) 0.0281 (10)

Geometric parameters (Å, º)

C1—O1 1.237 (5) C8—C13 1.396 (7)
C1—N1 1.311 (6) C8—N1 1.446 (6)
C1—C2 1.507 (7) C9—C10 1.416 (8)
C2—C3 1.346 (6) C9—C14 1.506 (8)
C2—C7 1.389 (7) C10—C11 1.337 (10)
C3—C4 1.364 (7) C10—H10A 0.9300
C3—Cl1 1.725 (6) C11—C12 1.377 (10)
C4—C5 1.382 (9) C11—H11A 0.9300
C4—H4A 0.9300 C12—C13 1.342 (8)
C5—C6 1.356 (11) C12—H12A 0.9300
C5—H5A 0.9300 C13—H13A 0.9300
C6—C7 1.347 (8) C14—H14C 0.9600
C6—H6A 0.9300 C14—H14B 0.9600
C7—H7A 0.9300 C14—H14A 0.9600
C8—C9 1.384 (7) N1—H1 0.861 (2)
O1—C1—N1 125.1 (4) C8—C9—C10 115.7 (6)
O1—C1—C2 118.7 (4) C8—C9—C14 123.7 (5)
N1—C1—C2 116.2 (4) C10—C9—C14 120.6 (5)
C3—C2—C7 118.0 (5) C11—C10—C9 121.7 (6)
C3—C2—C1 123.3 (5) C11—C10—H10A 119.2
C7—C2—C1 118.7 (5) C9—C10—H10A 119.2
C2—C3—C4 121.0 (5) C10—C11—C12 121.1 (7)
C2—C3—Cl1 121.1 (4) C10—C11—H11A 119.5
C4—C3—Cl1 117.9 (5) C12—C11—H11A 119.5
C3—C4—C5 120.2 (6) C13—C12—C11 119.6 (6)
C3—C4—H4A 119.9 C13—C12—H12A 120.2
C5—C4—H4A 119.9 C11—C12—H12A 120.2
C6—C5—C4 119.2 (7) C12—C13—C8 120.1 (6)
C6—C5—H5A 120.4 C12—C13—H13A 120.0
C4—C5—H5A 120.4 C8—C13—H13A 120.0
C7—C6—C5 119.9 (6) C9—C14—H14C 109.5
C7—C6—H6A 120.1 C9—C14—H14B 109.5
C5—C6—H6A 120.1 H14C—C14—H14B 109.5
C6—C7—C2 121.6 (6) C9—C14—H14A 109.5
C6—C7—H7A 119.2 H14C—C14—H14A 109.5
C2—C7—H7A 119.2 H14B—C14—H14A 109.5
C9—C8—C13 121.6 (5) C1—N1—C8 122.0 (4)
C9—C8—N1 118.8 (5) C1—N1—H1 118 (4)
C13—C8—N1 119.6 (5) C8—N1—H1 120 (4)
O1—C1—C2—C3 −59.1 (7) C13—C8—C9—C10 −2.0 (7)
N1—C1—C2—C3 122.1 (5) N1—C8—C9—C10 −179.2 (4)
O1—C1—C2—C7 120.7 (5) C13—C8—C9—C14 177.8 (5)
N1—C1—C2—C7 −58.2 (6) N1—C8—C9—C14 0.6 (7)
C7—C2—C3—C4 −3.2 (8) C8—C9—C10—C11 −2.9 (9)
C1—C2—C3—C4 176.6 (4) C14—C9—C10—C11 177.2 (6)
C7—C2—C3—Cl1 179.0 (4) C9—C10—C11—C12 5.8 (10)
C1—C2—C3—Cl1 −1.2 (7) C10—C11—C12—C13 −3.6 (10)
C2—C3—C4—C5 1.6 (8) C11—C12—C13—C8 −1.3 (8)
Cl1—C3—C4—C5 179.5 (5) C9—C8—C13—C12 4.2 (8)
C3—C4—C5—C6 0.2 (9) N1—C8—C13—C12 −178.7 (4)
C4—C5—C6—C7 −0.3 (9) O1—C1—N1—C8 3.0 (7)
C5—C6—C7—C2 −1.4 (9) C2—C1—N1—C8 −178.3 (5)
C3—C2—C7—C6 3.1 (8) C9—C8—N1—C1 −126.3 (5)
C1—C2—C7—C6 −176.7 (5) C13—C8—N1—C1 56.4 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (1) 2.00 (1) 2.853 (5) 171 (5)

Symmetry code: (i) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5935).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.
  7. Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. [DOI] [PubMed]
  8. Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.
  9. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Rodrigues, V. Z., Gowda, B. T., Vrábel, V. & Kožíšek, J. (2012). Acta Cryst. E68, o723. [DOI] [PMC free article] [PubMed]
  12. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023902/bt5935sup1.cif

e-68-o1936-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023902/bt5935Isup2.hkl

e-68-o1936-Isup2.hkl (106.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023902/bt5935Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES