Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1942. doi: 10.1107/S1600536812021599

4-(1H-Pyrazol-3-yl)pyridine–terephthalic acid–water (2/1/2)

Zheng-De Tan a,*, Feng-Jiao Tan b, Bo Tan b, Cheng-Ming Zhang a
PMCID: PMC3379495  PMID: 22719693

Abstract

In the title compound, 2C8H7N3·C8H6O4·2H2O, the pyridine and pyrazole rings are approximately coplanar, the dihedral angle between them being 4.69 (9)°. The asymmetric unit consists of half of the terephthalic acid (an inversion centre generates the other half of the mol­ecule), one 4-(1H-pyrazol-3-yl)pyridine (4pp) mol­ecule and one water mol­ecule. In the crystal, two 4pp and one terephthalic acid mol­ecules form a linear three-molecule unit as a result of O—H⋯N hydrogen bonds. These units are further assembled into a three-dimensional network by two types of hydrogen bonds, viz. O—H⋯O and N—H⋯O.

Related literature  

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003).graphic file with name e-68-o1942-scheme1.jpg

Experimental  

Crystal data  

  • 2C8H7N3·C8H6O4·2H2O

  • M r = 492.49

  • Triclinic, Inline graphic

  • a = 6.8364 (14) Å

  • b = 9.5308 (19) Å

  • c = 10.131 (2) Å

  • α = 67.52 (3)°

  • β = 71.22 (3)°

  • γ = 78.10 (3)°

  • V = 574.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.32 × 0.25 × 0.18 mm

Data collection  

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.967, T max = 0.981

  • 5041 measured reflections

  • 2024 independent reflections

  • 1254 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.128

  • S = 1.21

  • 2024 reflections

  • 172 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021599/nk2153sup1.cif

e-68-o1942-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021599/nk2153Isup2.hkl

e-68-o1942-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Wi 0.86 1.98 2.829 (3) 170
O1W—H1W⋯O2ii 0.84 (1) 1.99 (1) 2.811 (3) 167 (2)
O1W—H2W⋯O1iii 0.84 (1) 2.06 (1) 2.864 (3) 161 (2)
O1—H11⋯N3 0.82 (1) 1.80 (1) 2.614 (3) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge Hunan Provincial Department of Education for the Xiang Norimichi Foundation (2010 243).

supplementary crystallographic information

Comment

In the title compound, the pyridine ring and the pyrazole ring are approximately coplanar with the dihedral angles between them being 4.69 (9)°. Two 4pp and one terephthalic acid form a linear three-molecule unit as a result of O—H···N hydrogen bonds (Fig.2 and Table 1), which the N atom is from the ring of pyridine.There is a hydrogen interaction between N1 from pyrazol as the hydrogen bond donor and O1w as the hydrogen bond acceptor.At the same time, O1w as the hydrogen bond donor interacts with two O2 atoms from different terephthalic acid (Fig.3). These supermolecules are assembled into a three-dimensional network by two types of hydrogen bonding including O—H···O and N—H···O.

Experimental

4-(1H-pyrazol-3-yl)-pyridine was prepared according to the published method of Davies et al. (2003). An aqueous solution (20 mL) containing terephthalic acid( 0.1 mmol,16 mg), NaOH (0.2 mmol,8 mg) and 4-(1H-pyrazol-3-yl)-pyridine (0.2 mmol,29 mg) was stirred for 20 minutes in air, and left to stand at room temperature for about four weeks, then the colorless crystals were obtained.

Refinement

C- and N- bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with 30% probability displacement ellipsoids [Symmetry codes: i = -x, -y, -z].

Fig. 2.

Fig. 2.

A view of the supermolecule unit of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Three types hydrogen bonds in the stucture. Hydrogen bonds are shown as dashed lines.

Crystal data

2C8H7N3·C8H6O4·2H2O Z = 1
Mr = 492.49 F(000) = 258
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8364 (14) Å Cell parameters from 4645 reflections
b = 9.5308 (19) Å θ = 3.2–27.5°
c = 10.131 (2) Å µ = 0.11 mm1
α = 67.52 (3)° T = 293 K
β = 71.22 (3)° Block, colourless
γ = 78.10 (3)° 0.32 × 0.25 × 0.18 mm
V = 574.9 (2) Å3

Data collection

Rigaku SCXmini diffractometer 2024 independent reflections
Radiation source: sealed tube 1254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
ω scans θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −8→8
Tmin = 0.967, Tmax = 0.981 k = −11→11
5041 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0423P)2] where P = (Fo2 + 2Fc2)/3
2024 reflections (Δ/σ)max = 0.002
172 parameters Δρmax = 0.32 e Å3
4 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0188 (4) 0.3344 (3) 0.3605 (3) 0.0315 (7)
H1W 0.422 (4) 0.7787 (14) 0.275 (3) 0.047*
N1 1.2378 (3) 0.4525 (3) 0.3732 (3) 0.0425 (7)
H1 1.3209 0.5197 0.3507 0.051*
O1 0.3502 (3) 0.2110 (2) 0.0458 (2) 0.0473 (6)
O1W 0.4882 (3) 0.6952 (2) 0.2700 (2) 0.0513 (6)
C2 1.0696 (4) 0.2524 (3) 0.4943 (3) 0.0420 (8)
H2 1.0189 0.1622 0.5651 0.050*
H2W 0.553 (4) 0.702 (3) 0.1821 (10) 0.063*
N2 1.1240 (4) 0.4575 (3) 0.2854 (2) 0.0400 (7)
O2 0.3105 (3) −0.0044 (2) 0.2397 (2) 0.0475 (6)
C3 1.2093 (5) 0.3327 (4) 0.4991 (3) 0.0444 (8)
H3 1.2723 0.3089 0.5749 0.053*
N3 0.6010 (3) 0.2457 (3) 0.1765 (3) 0.0396 (6)
C4 0.6356 (4) 0.1461 (3) 0.3035 (3) 0.0449 (8)
H4 0.5675 0.0577 0.3498 0.054*
C5 0.7685 (4) 0.1702 (3) 0.3678 (3) 0.0418 (8)
H5 0.7896 0.0987 0.4563 0.050*
C6 0.8716 (4) 0.3018 (3) 0.3005 (3) 0.0311 (7)
C7 0.8296 (4) 0.4054 (3) 0.1688 (3) 0.0421 (8)
H7 0.8919 0.4962 0.1210 0.050*
C8 0.6973 (4) 0.3730 (3) 0.1105 (3) 0.0451 (8)
H8 0.6734 0.4420 0.0218 0.054*
C9 0.1342 (4) 0.0404 (3) 0.0568 (3) 0.0303 (7)
C10 0.0548 (4) 0.1468 (3) −0.0570 (3) 0.0362 (7)
H10 0.0913 0.2463 −0.0964 0.043*
C11 0.2749 (4) 0.0835 (3) 0.1202 (3) 0.0365 (7)
H11 0.427 (3) 0.212 (3) 0.093 (2) 0.044*
C12 0.0774 (4) −0.1067 (3) 0.1123 (3) 0.0368 (7)
H12 0.1291 −0.1799 0.1882 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0348 (17) 0.0340 (17) 0.0324 (17) −0.0076 (14) −0.0138 (14) −0.0124 (15)
N1 0.0410 (16) 0.0508 (17) 0.0497 (17) −0.0133 (12) −0.0191 (13) −0.0218 (15)
O1 0.0540 (14) 0.0522 (14) 0.0513 (14) −0.0250 (11) −0.0301 (11) −0.0111 (12)
O1W 0.0522 (16) 0.0496 (14) 0.0540 (14) −0.0137 (11) −0.0216 (12) −0.0092 (12)
C2 0.0446 (19) 0.0435 (19) 0.0449 (19) −0.0102 (15) −0.0174 (16) −0.0152 (16)
N2 0.0418 (15) 0.0459 (16) 0.0419 (15) −0.0168 (12) −0.0179 (12) −0.0134 (13)
O2 0.0631 (15) 0.0476 (14) 0.0426 (13) −0.0174 (11) −0.0317 (12) −0.0065 (12)
C3 0.050 (2) 0.050 (2) 0.043 (2) −0.0045 (16) −0.0243 (16) −0.0161 (18)
N3 0.0368 (15) 0.0468 (16) 0.0402 (16) −0.0107 (12) −0.0117 (12) −0.0156 (14)
C4 0.045 (2) 0.049 (2) 0.048 (2) −0.0232 (16) −0.0101 (16) −0.0169 (18)
C5 0.0507 (19) 0.0396 (18) 0.0389 (18) −0.0182 (15) −0.0195 (15) −0.0043 (15)
C6 0.0322 (17) 0.0341 (17) 0.0327 (17) −0.0028 (14) −0.0119 (14) −0.0149 (15)
C7 0.0468 (19) 0.0375 (18) 0.048 (2) −0.0141 (14) −0.0211 (16) −0.0090 (16)
C8 0.049 (2) 0.048 (2) 0.0427 (19) −0.0108 (17) −0.0227 (16) −0.0090 (17)
C9 0.0263 (16) 0.0353 (18) 0.0329 (16) −0.0078 (13) −0.0074 (13) −0.0134 (15)
C10 0.0382 (18) 0.0311 (16) 0.0435 (18) −0.0124 (14) −0.0149 (15) −0.0094 (15)
C11 0.0349 (17) 0.0402 (19) 0.0439 (19) −0.0119 (15) −0.0123 (15) −0.0190 (17)
C12 0.0381 (18) 0.0401 (18) 0.0364 (17) −0.0093 (14) −0.0177 (14) −0.0081 (15)

Geometric parameters (Å, º)

C1—N2 1.336 (3) C4—C5 1.373 (4)
C1—C2 1.397 (4) C4—H4 0.9300
C1—C6 1.465 (3) C5—C6 1.391 (3)
N1—C3 1.337 (3) C5—H5 0.9300
N1—N2 1.340 (3) C6—C7 1.400 (4)
N1—H1 0.8600 C7—C8 1.364 (4)
O1—C11 1.272 (3) C7—H7 0.9300
O1—H11 0.8202 (11) C8—H8 0.9300
O1W—H1W 0.8400 (11) C9—C12 1.383 (3)
O1W—H2W 0.8400 (11) C9—C10 1.391 (4)
C2—C3 1.364 (4) C9—C11 1.506 (4)
C2—H2 0.9300 C10—C12i 1.382 (4)
O2—C11 1.247 (3) C10—H10 0.9300
C3—H3 0.9300 C12—C10i 1.382 (4)
N3—C8 1.333 (3) C12—H12 0.9300
N3—C4 1.335 (4)
N2—C1—C2 110.9 (2) C5—C6—C7 116.8 (3)
N2—C1—C6 120.5 (2) C5—C6—C1 123.3 (2)
C2—C1—C6 128.6 (3) C7—C6—C1 120.0 (2)
C3—N1—N2 113.3 (2) C8—C7—C6 120.0 (3)
C3—N1—H1 123.3 C8—C7—H7 120.0
N2—N1—H1 123.3 C6—C7—H7 120.0
C11—O1—H11 102.3 (19) N3—C8—C7 122.2 (3)
H1W—O1W—H2W 111.1 (12) N3—C8—H8 118.9
C3—C2—C1 105.4 (3) C7—C8—H8 118.9
C3—C2—H2 127.3 C12—C9—C10 118.0 (2)
C1—C2—H2 127.3 C12—C9—C11 120.6 (3)
C1—N2—N1 104.1 (2) C10—C9—C11 121.4 (2)
N1—C3—C2 106.3 (3) C12i—C10—C9 120.9 (3)
N1—C3—H3 126.8 C12i—C10—H10 119.5
C2—C3—H3 126.8 C9—C10—H10 119.5
C8—N3—C4 119.1 (2) O2—C11—O1 124.0 (3)
N3—C4—C5 122.0 (3) O2—C11—C9 119.7 (3)
N3—C4—H4 119.0 O1—C11—C9 116.3 (3)
C5—C4—H4 119.0 C9—C12—C10i 121.1 (3)
C4—C5—C6 120.0 (3) C9—C12—H12 119.4
C4—C5—H5 120.0 C10i—C12—H12 119.4
C6—C5—H5 120.0

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1Wii 0.86 1.98 2.829 (3) 170
O1W—H1W···O2iii 0.84 (1) 1.99 (1) 2.811 (3) 167 (2)
O1W—H2W···O1iv 0.84 (1) 2.06 (1) 2.864 (3) 161 (2)
O1—H11···N3 0.82 (1) 1.80 (1) 2.614 (3) 170 (3)

Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2153).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812021599/nk2153sup1.cif

e-68-o1942-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021599/nk2153Isup2.hkl

e-68-o1942-Isup2.hkl (99.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES