Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1943. doi: 10.1107/S1600536812023690

2-(1H-Pyrrolo­[2,3-b]pyridin-2-yl)pyridine

Ping-Hsin Huang a,*, Yuh-Sheng Wen b, Jiun-Yi Shen c
PMCID: PMC3379496  PMID: 22719694

Abstract

In the title compound, C12H9N3, the dihedral angle between the pyridine and aza­indole rings is 6.20 (2)°. In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers.

Related literature  

For the production of luminescent organic/organometallic compounds, see: Liu et al. (2000). For related structures, see: Sakamoto et al. (1996); Huang et al. (2011).graphic file with name e-68-o1943-scheme1.jpg

Experimental  

Crystal data  

  • C12H9N3

  • M r = 195.22

  • Monoclinic, Inline graphic

  • a = 10.1416 (10) Å

  • b = 13.7428 (14) Å

  • c = 6.7395 (7) Å

  • β = 94.331 (2)°

  • V = 936.63 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.55 × 0.15 × 0.05 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.938, T max = 0.996

  • 7069 measured reflections

  • 2154 independent reflections

  • 1792 reflections with I > 2σa(I)

  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.145

  • S = 1.19

  • 2154 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023690/rk2358sup1.cif

e-68-o1943-sup1.cif (13.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023690/rk2358Isup2.hkl

e-68-o1943-Isup2.hkl (105.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023690/rk2358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 2.10 2.944 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partially supported by the Instrumentation Center, National Taiwan University, and Cardinal Tien College of Healthcare & Management.

supplementary crystallographic information

Comment

The title compound, has been shown to be an precursor for the production of luminescent organic/organometallic compound (Liu et al., 2000). A one pot synthesis of a 7-azaindole substituted in the 2-position has been achieved by Pd complex catalyzed Cross-coupling reaction of 2-bromopyridine (Sakamoto et al., 1996), in high yield (see Scheme). The molecular structure is shown in Fig. 1. The dihedral angle between the pyridine and azaindole rings is 6.20 (2)°, and that between the pyridine and pyrrole rings at 7-azaindole is 0.35 (2)° (Huang et al., 2011). Weak intermolecular N2—H2···N1i (see Table 1) interactions help to stabilize the crystal structure - formation of centrosymmetrical dimers. Symmetry code: (i) -x+1, -y+2, -z.

Experimental

The compound was synthesized by the following procedure (Liu et al., 2000); (Sakamoto et al., 1996). A solution of 1-(benzenesulfonyl)-2-(2-pyridyl)-7-azaindole (2.00 g, 5.97 mmol), ethanol (340 ml), and 10% aqueous NaOH (34 ml) was heated at reflux overnight. The resulting mixture was concertrated, and the residue was dissolved in CH2Cl2. The organic solution was washed with water and aqueous Na2CO3, dried, and concertrated. The residue was purified by column chromatography using CH2Cl2/CH3OH (20:1) as eluent, followed by recrystallization from CH2Cl2 and hexane to yield 0.82 g (70%) of title compound as a white solid. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature. 1H NMR (CDCl3): 10.90 (br s, 1H), 8.69 (ddd, 1H, J = 4.8, 1.6, 1.0 Hz), 8.46 (dd, 1H, J = 4.8, 1.6 Hz), 7.98 (dd, 1H, J = 7.8, 1.3 Hz), 7.85 (m, 1H), 7.76 (td, 1H, J = 7.8, 1.7 Hz), 7.24 (ddd, 1H, J = 7.8, 4.8, 1.2 Hz), 7.12 (dd, 1H, J = 4.8, 1.8 Hz), 6.99 (d, 1H, J = 1.8 Hz). Anal. Calcd for C12H9N3: C, 73.83; H, 4.65; N, 21.52. Found: C, 73.26; H, 4.48; N, 21.58.

Refinement

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are shown as small spheres of the arbitrary radii.

Crystal data

C12H9N3 F(000) = 408
Mr = 195.22 Dx = 1.384 Mg m3Dm = 1.384 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1871 reflections
a = 10.1416 (10) Å θ = 2.5–26.3°
b = 13.7428 (14) Å µ = 0.09 mm1
c = 6.7395 (7) Å T = 200 K
β = 94.331 (2)° Needle, colourless
V = 936.63 (16) Å3 0.55 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2154 independent reflections
Radiation source: fine-focus sealed tube 1792 reflections with I > 2σa(I)
Graphite monochromator Rint = 0.056
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −13→13
Tmin = 0.938, Tmax = 0.996 k = −17→17
7069 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2976P] where P = (Fo2 + 2Fc2)/3
2154 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.66995 (16) 0.94501 (12) 0.0034 (2) 0.0382 (4)
N2 0.50593 (15) 0.92225 (11) 0.2357 (2) 0.0324 (4)
H2 0.4394 0.9513 0.1684 0.039*
N3 0.27130 (16) 0.91454 (12) 0.4136 (2) 0.0371 (4)
C1 0.7961 (2) 0.92562 (16) −0.0253 (3) 0.0418 (5)
H1 0.8296 0.9475 −0.1454 0.050*
C2 0.8818 (2) 0.87517 (16) 0.1101 (3) 0.0412 (5)
H2A 0.9707 0.8639 0.0808 0.049*
C3 0.8377 (2) 0.84179 (14) 0.2859 (3) 0.0391 (5)
H3 0.8948 0.8070 0.3790 0.047*
C4 0.70684 (19) 0.86035 (13) 0.3238 (3) 0.0333 (4)
C5 0.62979 (18) 0.91210 (13) 0.1741 (3) 0.0316 (4)
C6 0.62305 (19) 0.84091 (13) 0.4777 (3) 0.0351 (5)
H6 0.6466 0.8073 0.5984 0.042*
C7 0.50115 (19) 0.87982 (13) 0.4198 (3) 0.0323 (4)
C8 0.37880 (18) 0.87873 (13) 0.5192 (3) 0.0327 (4)
C9 0.3725 (2) 0.84151 (14) 0.7108 (3) 0.0411 (5)
H9 0.4501 0.8179 0.7828 0.049*
C10 0.2536 (2) 0.83931 (15) 0.7945 (3) 0.0465 (6)
H10 0.2474 0.8138 0.9244 0.056*
C11 0.1429 (2) 0.87497 (16) 0.6860 (3) 0.0460 (5)
H11 0.0586 0.8738 0.7388 0.055*
C12 0.1579 (2) 0.91213 (16) 0.5003 (3) 0.0440 (5)
H12 0.0817 0.9380 0.4283 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0389 (9) 0.0415 (9) 0.0336 (9) 0.0069 (7) −0.0001 (7) 0.0021 (7)
N2 0.0326 (8) 0.0329 (8) 0.0306 (8) 0.0031 (6) −0.0059 (6) 0.0030 (7)
N3 0.0347 (9) 0.0376 (9) 0.0382 (9) −0.0009 (7) −0.0026 (7) 0.0040 (7)
C1 0.0422 (11) 0.0459 (12) 0.0373 (11) 0.0069 (9) 0.0026 (9) 0.0005 (9)
C2 0.0352 (11) 0.0435 (12) 0.0444 (12) 0.0067 (9) −0.0013 (9) −0.0031 (10)
C3 0.0366 (11) 0.0361 (11) 0.0426 (12) 0.0037 (8) −0.0104 (9) 0.0006 (9)
C4 0.0379 (10) 0.0259 (9) 0.0341 (10) −0.0004 (8) −0.0101 (8) −0.0009 (8)
C5 0.0336 (10) 0.0281 (9) 0.0319 (10) 0.0027 (8) −0.0050 (8) −0.0030 (8)
C6 0.0390 (11) 0.0298 (10) 0.0344 (10) −0.0013 (8) −0.0106 (8) 0.0053 (8)
C7 0.0382 (10) 0.0253 (9) 0.0321 (10) −0.0037 (8) −0.0065 (8) 0.0015 (8)
C8 0.0357 (10) 0.0253 (9) 0.0358 (10) −0.0038 (7) −0.0054 (8) −0.0002 (8)
C9 0.0453 (12) 0.0367 (11) 0.0401 (11) −0.0023 (9) −0.0050 (9) 0.0062 (9)
C10 0.0566 (14) 0.0433 (12) 0.0397 (12) −0.0035 (10) 0.0054 (10) 0.0083 (10)
C11 0.0410 (12) 0.0458 (12) 0.0521 (13) −0.0032 (10) 0.0094 (10) 0.0023 (10)
C12 0.0393 (11) 0.0444 (12) 0.0473 (12) 0.0000 (9) −0.0027 (9) 0.0011 (10)

Geometric parameters (Å, º)

N1—C5 1.328 (2) C4—C6 1.415 (3)
N1—C1 1.335 (3) C4—C5 1.420 (3)
N2—C5 1.360 (2) C6—C7 1.376 (3)
N2—C7 1.376 (2) C6—H6 0.9500
N2—H2 0.8800 C7—C8 1.454 (3)
N3—C12 1.329 (3) C8—C9 1.395 (3)
N3—C8 1.349 (2) C9—C10 1.369 (3)
C1—C2 1.396 (3) C9—H9 0.9500
C1—H1 0.9500 C10—C11 1.383 (3)
C2—C3 1.377 (3) C10—H10 0.9500
C2—H2A 0.9500 C11—C12 1.371 (3)
C3—C4 1.393 (3) C11—H11 0.9500
C3—H3 0.9500 C12—H12 0.9500
C5—N1—C1 114.66 (18) C7—C6—H6 126.4
C5—N2—C7 109.17 (15) C4—C6—H6 126.4
C5—N2—H2 125.4 N2—C7—C6 109.17 (17)
C7—N2—H2 125.4 N2—C7—C8 120.62 (16)
C12—N3—C8 116.82 (17) C6—C7—C8 130.19 (18)
N1—C1—C2 124.1 (2) N3—C8—C9 122.01 (18)
N1—C1—H1 117.9 N3—C8—C7 115.95 (17)
C2—C1—H1 117.9 C9—C8—C7 122.04 (18)
C3—C2—C1 120.04 (19) C10—C9—C8 119.5 (2)
C3—C2—H2A 120.0 C10—C9—H9 120.2
C1—C2—H2A 120.0 C8—C9—H9 120.2
C2—C3—C4 118.22 (19) C9—C10—C11 118.7 (2)
C2—C3—H3 120.9 C9—C10—H10 120.7
C4—C3—H3 120.9 C11—C10—H10 120.7
C3—C4—C6 137.09 (19) C12—C11—C10 118.2 (2)
C3—C4—C5 116.24 (18) C12—C11—H11 120.9
C6—C4—C5 106.67 (17) C10—C11—H11 120.9
N1—C5—N2 125.47 (17) N3—C12—C11 124.7 (2)
N1—C5—C4 126.71 (18) N3—C12—H12 117.6
N2—C5—C4 107.81 (17) C11—C12—H12 117.6
C7—C6—C4 107.17 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1i 0.88 2.10 2.944 (2) 162

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2358).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Huang, P.-H., Lin, K.-L. & Wen, Y.-S. (2011). Acta Cryst. E67, o109.
  5. Liu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671–3678.
  6. Sakamoto, T., Kondo, Y., Takazawa, N. & Yamanaka, H. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1927–1934.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023690/rk2358sup1.cif

e-68-o1943-sup1.cif (13.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023690/rk2358Isup2.hkl

e-68-o1943-Isup2.hkl (105.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023690/rk2358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES