Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1950–o1951. doi: 10.1107/S1600536812023409

3-O-Methyl-1-isomangostin

Nawong Boonnak a, Suchada Chantrapromma a,*,, Hoong-Kun Fun b,§
PMCID: PMC3379502  PMID: 22719700

Abstract

In the title xanthone derivative [systematic name: 9-hy­droxy-5,10-dimeth­oxy-2,2-dimethyl-11-(3-methyl­but-2-en-1-yl)-2,3,4,12-tetra­hydro-1,7-dioxatetra­phen-12-one], C25H28O6, the xanthone ring system is roughly planar, with an r.m.s. deviation of 0.1038 (1) Å. The chromane ring is in a half-chair conformation and the 3-methyl­but-2-enyl substituent is axially attached with an (+)-anti­clinal conformation. Two weak intra­molecular C—H⋯O inter­actions generate two S(6) ring motifs. In the crystal, mol­ecules are linked into ribbons along the c axis by O—H⋯O and weak C—H⋯O hydrogen bonds. A π–π inter­action, with a centroid–centroid distance of 3.5413 (8) Å, is also observed.

Related literature  

For background to xanthones and their biological activity, see: Bennett & Lee (1989); Boonnak et al. (2010); Gopalakrishnan et al. (1997); Ho et al. (2002); Mahabusarakam et al. (1987); Obolskiy et al. (2009); Phongpaichit et al. (1994); Shankaranarayan et al. (1979); Yoshikawa et al. (1994). For related structures, see: Chantrapromma et al. (2005). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).graphic file with name e-68-o1950-scheme1.jpg

Experimental  

Crystal data  

  • C25H28O6

  • M r = 424.47

  • Monoclinic, Inline graphic

  • a = 10.8635 (9) Å

  • b = 16.6117 (13) Å

  • c = 13.4146 (8) Å

  • β = 118.843 (5)°

  • V = 2120.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.33 × 0.23 × 0.17 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.970, T max = 0.984

  • 21681 measured reflections

  • 5630 independent reflections

  • 4344 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.134

  • S = 1.05

  • 5630 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023409/rz2760sup1.cif

e-68-o1950-sup1.cif (32KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023409/rz2760Isup2.hkl

e-68-o1950-Isup2.hkl (275.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023409/rz2760Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O2i 0.90 1.77 2.6082 (17) 155
C15—H15A⋯O1ii 0.99 2.55 3.3820 (18) 141
C20—H20C⋯O5 0.98 2.57 3.104 (2) 115
C21—H21A⋯O2 0.99 2.29 2.807 (2) 111

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NB thanks Prince of Songkla University for a postdoctoral fellowship. Financial support from Prince of Songkla University is gratefully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Garcinia genus plants are commonly known as a good providing source of bioactive xanthones (Bennett & Lee, 1989). The α-, β- and γ-mangostins are well known bioactive xanthones that were isolated from G. mangostana as major constituents (Mahabusarakam et al., 1987) and they exhibit various biological and pharmacological properties (Obolskiy et al., 2009; Phongpaichit et al., 1994) such as antibacterial (Boonnak et al., 2010), antifungal (Gopalakrishnan et al., 1997), anti-inflammatory (Shankaranarayan et al., 1979), antioxidant (Yoshikawa et al., 1994) and anti-cancer (Ho et al., 2002) activities. These interesting biological properties of xanthones have led us to synthesize the title compound (I) by modification of an isoprenyl side chain of β-mangostin to the chromane ring via acid catalysis (Gopalakrishnan et al., 1997) with the hope to enhance its bioactivity. However our antibacterial testing has found that (I) is less active than its precusor (β-mangostin). Herein the crystal structure of (I) is reported.

Compound (I) has a xanthone nucleus with a fused angular fashion chromane ring (Fig. 1). The three-ring system [C1–C13/O1] of the xanthone nucleus is roughly planar with an r.m.s. deviation of 0.1038 (1) Å from the plane through all the fourteen non-hydrogen atoms (maximum deviation of -0.192 (1) Å for atom O19). The chromane ring (C1–C2/C14–C16/O3) is in a half-chair conformation with puckering parameter Q = 0.4631 (17) Å, θ = 49.7 (2)° and φ = 272.7 (2)° (Cremer & Pople, 1975), with the puckered C14 and C15 atoms having deviations of -0.306 (1) and 0.293 (2) Å, respectively. The hydroxyl group is planarly attached at atom C8. The two methoxy groups have different orientations in which one methoxy group at atom C3 lies close to the plane of its bound benzene ring with the torsion angle C19–O4–C3–C4 = 1.79 (19)° whereas the other is axially attached at atom C9 with the torsion angle C20–O6–C9–C8 = 80.63 (15)°, indicating an (+)-anti-clinal conformation. The 3-methyl-2-butenyl substituent is attached at atom C10 with the torsion angle C9–C10–C21–C22 = 87.47 (16) °, indicating an (+)-anti-clinal conformation (Fig. 1). Intramolecular C20—H20C···O5 and C21—H21A···O2 weak interactions (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to those found in a related structure (Chantrapromma et al., 2005).

In the crystal packing, the molecules are linked into ribbons along [0 0 1] by O—H···O hydrogen bonds and the adjacent ribbons are further linked by weak C—H···O interactions (Fig. 2 and Table 1). A π–π interaction with the distance of Cg2···Cg2ii = 3.5413 (8) Å is observed; Cg2 is the centroid of C1–C5/C13 ring; symmetry code: (ii) 1-x, 2-y, 2-z.

Experimental

A solution of β-mangostin (30 mg, 0.707 mmol) and p-toluenesulfonic acid (75 mg, 0.436 mmol) in dry acetic acid (1.30 ml) was stirred at room temperature for 24 h. The mixture was extracted with ethylacetate. The combined ethylacetate extract was further washed with a saturated aqueous NaHCO3 solution and dried over anhydrous MgSO4. The solvent was evaporated under reduced pressure to give a yellow residue, which was further purified by column chromatography (hexane/ethylacetate, 9:1 v/v) to yield the title compound (I). Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a solution of CHCl3/CH3OH (9:1 v)/v by slow evaporation of the solvent at room temperature after several days.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.90 Å, d(C-H) = 0.95 Å for aromatic and CH, 0.99 for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. One outlier (1 0 0 ) was omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Hydrogen bonds were drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed approximately along the a axis. Only H atoms involved in hydrogen bonds (dashed lines) are shown for clarity.

Crystal data

C25H28O6 F(000) = 904
Mr = 424.47 Dx = 1.330 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5630 reflections
a = 10.8635 (9) Å θ = 2.1–29.0°
b = 16.6117 (13) Å µ = 0.09 mm1
c = 13.4146 (8) Å T = 100 K
β = 118.843 (5)° Block, yellow
V = 2120.5 (3) Å3 0.33 × 0.23 × 0.17 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer 5630 independent reflections
Radiation source: sealed tube 4344 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.970, Tmax = 0.984 k = −22→16
21681 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.7665P] where P = (Fo2 + 2Fc2)/3
5630 reflections (Δ/σ)max = 0.001
286 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47611 (10) 0.79136 (6) 1.00159 (8) 0.0224 (2)
O2 0.72643 (12) 0.86788 (7) 0.87266 (9) 0.0303 (2)
O3 0.56536 (10) 0.99916 (6) 0.79679 (8) 0.0246 (2)
O4 0.17200 (10) 1.01564 (6) 0.85893 (9) 0.0254 (2)
O5 0.79450 (11) 0.58712 (6) 1.21935 (9) 0.0269 (2)
H1O5 0.7523 0.5913 1.2623 0.040*
O6 0.99052 (11) 0.64398 (6) 1.16684 (9) 0.0271 (2)
C1 0.48227 (14) 0.96827 (8) 0.83776 (11) 0.0208 (3)
C2 0.36202 (14) 1.00707 (8) 0.82405 (11) 0.0215 (3)
C3 0.28457 (14) 0.97195 (8) 0.87218 (11) 0.0214 (3)
C4 0.32266 (14) 0.89900 (8) 0.92935 (11) 0.0218 (3)
H4A 0.2671 0.8747 0.9582 0.026*
C5 0.44460 (14) 0.86281 (8) 0.94284 (11) 0.0199 (3)
C6 0.60528 (14) 0.75690 (8) 1.03800 (11) 0.0202 (3)
C7 0.63295 (15) 0.69158 (8) 1.11039 (12) 0.0219 (3)
H7A 0.5658 0.6742 1.1319 0.026*
C8 0.76041 (15) 0.65239 (8) 1.15050 (11) 0.0224 (3)
C9 0.86042 (14) 0.68063 (8) 1.11974 (12) 0.0228 (3)
C10 0.83498 (15) 0.74805 (8) 1.05092 (12) 0.0227 (3)
C11 0.70074 (14) 0.78588 (8) 1.00440 (11) 0.0209 (3)
C12 0.65700 (15) 0.85193 (8) 0.92089 (11) 0.0215 (3)
C13 0.52913 (14) 0.89451 (8) 0.90017 (11) 0.0199 (3)
C14 0.50491 (16) 1.06108 (9) 0.70826 (12) 0.0262 (3)
C15 0.42974 (16) 1.12362 (9) 0.74250 (13) 0.0275 (3)
H15A 0.4988 1.1504 0.8135 0.033*
H15B 0.3881 1.1651 0.6823 0.033*
C16 0.31443 (15) 1.08605 (8) 0.76085 (12) 0.0249 (3)
H16A 0.2884 1.1237 0.8048 0.030*
H16B 0.2301 1.0768 0.6862 0.030*
C17 0.63073 (18) 1.09726 (10) 0.70456 (15) 0.0350 (4)
H17A 0.6948 1.1207 0.7789 0.052*
H17B 0.5989 1.1393 0.6461 0.052*
H17C 0.6798 1.0551 0.6863 0.052*
C18 0.40695 (18) 1.01862 (10) 0.59661 (13) 0.0319 (3)
H18A 0.4595 0.9774 0.5806 0.048*
H18B 0.3689 1.0580 0.5346 0.048*
H18C 0.3296 0.9933 0.6030 0.048*
C19 0.09221 (16) 0.98457 (9) 0.91024 (14) 0.0287 (3)
H19A 0.0136 1.0209 0.8939 0.043*
H19B 0.1529 0.9805 0.9928 0.043*
H19C 0.0557 0.9311 0.8790 0.043*
C20 0.98891 (17) 0.57034 (9) 1.11071 (13) 0.0294 (3)
H20A 1.0844 0.5485 1.1443 0.044*
H20B 0.9538 0.5807 1.0295 0.044*
H20C 0.9274 0.5314 1.1199 0.044*
C21 0.95680 (15) 0.78156 (9) 1.03784 (13) 0.0269 (3)
H21A 0.9428 0.8402 1.0236 0.032*
H21B 1.0449 0.7738 1.1104 0.032*
C22 0.97349 (17) 0.74360 (9) 0.94364 (14) 0.0291 (3)
H22A 0.8942 0.7445 0.8697 0.035*
C23 1.09098 (19) 0.70835 (9) 0.95472 (17) 0.0364 (4)
C24 1.22440 (18) 0.69855 (11) 1.06549 (19) 0.0455 (5)
H24A 1.2082 0.7148 1.1284 0.068*
H24B 1.2981 0.7324 1.0651 0.068*
H24C 1.2540 0.6421 1.0752 0.068*
C25 1.0935 (2) 0.67564 (13) 0.8511 (2) 0.0533 (5)
H25A 1.0008 0.6827 0.7843 0.080*
H25B 1.1172 0.6183 0.8620 0.080*
H25C 1.1641 0.7047 0.8395 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0212 (5) 0.0229 (5) 0.0282 (5) 0.0027 (4) 0.0158 (4) 0.0046 (4)
O2 0.0344 (6) 0.0341 (6) 0.0357 (6) 0.0082 (4) 0.0275 (5) 0.0088 (4)
O3 0.0271 (5) 0.0253 (5) 0.0274 (5) 0.0018 (4) 0.0179 (4) 0.0058 (4)
O4 0.0235 (5) 0.0275 (5) 0.0287 (5) 0.0051 (4) 0.0154 (4) 0.0024 (4)
O5 0.0339 (6) 0.0277 (5) 0.0280 (5) 0.0090 (4) 0.0219 (5) 0.0073 (4)
O6 0.0252 (5) 0.0314 (5) 0.0277 (5) 0.0079 (4) 0.0152 (4) 0.0027 (4)
C1 0.0233 (7) 0.0225 (6) 0.0189 (6) −0.0020 (5) 0.0120 (5) −0.0008 (5)
C2 0.0233 (7) 0.0220 (6) 0.0194 (6) 0.0001 (5) 0.0105 (5) −0.0007 (5)
C3 0.0198 (6) 0.0252 (6) 0.0194 (6) 0.0011 (5) 0.0098 (5) −0.0024 (5)
C4 0.0209 (7) 0.0257 (6) 0.0230 (6) −0.0002 (5) 0.0138 (6) 0.0011 (5)
C5 0.0220 (6) 0.0203 (6) 0.0192 (6) 0.0000 (5) 0.0114 (5) 0.0005 (5)
C6 0.0197 (6) 0.0230 (6) 0.0208 (6) 0.0010 (5) 0.0121 (5) −0.0016 (5)
C7 0.0248 (7) 0.0236 (6) 0.0235 (6) 0.0012 (5) 0.0165 (6) 0.0003 (5)
C8 0.0273 (7) 0.0234 (6) 0.0198 (6) 0.0034 (5) 0.0139 (6) 0.0003 (5)
C9 0.0220 (7) 0.0270 (7) 0.0224 (6) 0.0040 (5) 0.0132 (6) −0.0007 (5)
C10 0.0243 (7) 0.0256 (6) 0.0232 (6) 0.0008 (5) 0.0156 (6) −0.0016 (5)
C11 0.0225 (7) 0.0230 (6) 0.0218 (6) 0.0016 (5) 0.0143 (5) −0.0002 (5)
C12 0.0241 (7) 0.0230 (6) 0.0217 (6) 0.0002 (5) 0.0144 (6) −0.0010 (5)
C13 0.0215 (6) 0.0220 (6) 0.0189 (6) −0.0003 (5) 0.0119 (5) −0.0006 (5)
C14 0.0329 (8) 0.0239 (6) 0.0272 (7) 0.0023 (6) 0.0189 (6) 0.0062 (5)
C15 0.0338 (8) 0.0227 (6) 0.0309 (7) 0.0005 (6) 0.0193 (7) 0.0027 (5)
C16 0.0275 (7) 0.0225 (6) 0.0263 (7) 0.0023 (5) 0.0143 (6) 0.0021 (5)
C17 0.0399 (9) 0.0293 (8) 0.0465 (9) 0.0022 (6) 0.0294 (8) 0.0102 (7)
C18 0.0431 (9) 0.0314 (7) 0.0257 (7) 0.0027 (7) 0.0203 (7) 0.0034 (6)
C19 0.0239 (7) 0.0328 (7) 0.0347 (8) 0.0028 (6) 0.0184 (7) −0.0002 (6)
C20 0.0323 (8) 0.0290 (7) 0.0301 (7) 0.0092 (6) 0.0176 (7) 0.0043 (6)
C21 0.0256 (7) 0.0284 (7) 0.0322 (7) 0.0002 (6) 0.0182 (6) 0.0013 (6)
C22 0.0312 (8) 0.0305 (7) 0.0353 (8) 0.0045 (6) 0.0237 (7) 0.0056 (6)
C23 0.0428 (9) 0.0264 (7) 0.0596 (11) 0.0074 (6) 0.0403 (9) 0.0122 (7)
C24 0.0344 (9) 0.0391 (9) 0.0749 (14) 0.0098 (7) 0.0358 (10) 0.0170 (9)
C25 0.0694 (14) 0.0468 (11) 0.0768 (14) 0.0169 (10) 0.0616 (13) 0.0112 (10)

Geometric parameters (Å, º)

O1—C6 1.3689 (16) C14—C18 1.528 (2)
O1—C5 1.3737 (15) C15—C16 1.522 (2)
O2—C12 1.2363 (16) C15—H15A 0.9900
O3—C1 1.3635 (16) C15—H15B 0.9900
O3—C14 1.4653 (16) C16—H16A 0.9900
O4—C3 1.3579 (16) C16—H16B 0.9900
O4—C19 1.4377 (18) C17—H17A 0.9800
O5—C8 1.3549 (16) C17—H17B 0.9800
O5—H1O5 0.8949 C17—H17C 0.9800
O6—C9 1.3805 (17) C18—H18A 0.9800
O6—C20 1.4322 (18) C18—H18B 0.9800
C1—C2 1.3871 (19) C18—H18C 0.9800
C1—C13 1.4318 (18) C19—H19A 0.9800
C2—C3 1.411 (2) C19—H19B 0.9800
C2—C16 1.5114 (19) C19—H19C 0.9800
C3—C4 1.3863 (19) C20—H20A 0.9800
C4—C5 1.3848 (18) C20—H20B 0.9800
C4—H4A 0.9500 C20—H20C 0.9800
C5—C13 1.3982 (18) C21—C22 1.499 (2)
C6—C7 1.3890 (19) C21—H21A 0.9900
C6—C11 1.4005 (19) C21—H21B 0.9900
C7—C8 1.3826 (19) C22—C23 1.346 (2)
C7—H7A 0.9500 C22—H22A 0.9500
C8—C9 1.415 (2) C23—C24 1.502 (3)
C9—C10 1.3917 (19) C23—C25 1.505 (3)
C10—C11 1.4258 (19) C24—H24A 0.9800
C10—C21 1.522 (2) C24—H24B 0.9800
C11—C12 1.4734 (19) C24—H24C 0.9800
C12—C13 1.4611 (19) C25—H25A 0.9800
C14—C17 1.516 (2) C25—H25B 0.9800
C14—C15 1.523 (2) C25—H25C 0.9800
C6—O1—C5 119.66 (11) H15A—C15—H15B 107.9
C1—O3—C14 117.77 (11) C2—C16—C15 111.17 (12)
C3—O4—C19 117.28 (11) C2—C16—H16A 109.4
C8—O5—H1O5 108.7 C15—C16—H16A 109.4
C9—O6—C20 112.70 (11) C2—C16—H16B 109.4
O3—C1—C2 122.40 (12) C15—C16—H16B 109.4
O3—C1—C13 116.11 (12) H16A—C16—H16B 108.0
C2—C1—C13 121.44 (12) C14—C17—H17A 109.5
C1—C2—C3 118.60 (12) C14—C17—H17B 109.5
C1—C2—C16 121.55 (13) H17A—C17—H17B 109.5
C3—C2—C16 119.85 (12) C14—C17—H17C 109.5
O4—C3—C4 123.32 (12) H17A—C17—H17C 109.5
O4—C3—C2 114.67 (12) H17B—C17—H17C 109.5
C4—C3—C2 122.01 (12) C14—C18—H18A 109.5
C5—C4—C3 117.60 (12) C14—C18—H18B 109.5
C5—C4—H4A 121.2 H18A—C18—H18B 109.5
C3—C4—H4A 121.2 C14—C18—H18C 109.5
O1—C5—C4 114.08 (12) H18A—C18—H18C 109.5
O1—C5—C13 121.95 (12) H18B—C18—H18C 109.5
C4—C5—C13 123.97 (12) O4—C19—H19A 109.5
O1—C6—C7 114.52 (12) O4—C19—H19B 109.5
O1—C6—C11 122.16 (12) H19A—C19—H19B 109.5
C7—C6—C11 123.33 (12) O4—C19—H19C 109.5
C8—C7—C6 118.57 (13) H19A—C19—H19C 109.5
C8—C7—H7A 120.7 H19B—C19—H19C 109.5
C6—C7—H7A 120.7 O6—C20—H20A 109.5
O5—C8—C7 122.36 (13) O6—C20—H20B 109.5
O5—C8—C9 117.91 (12) H20A—C20—H20B 109.5
C7—C8—C9 119.73 (12) O6—C20—H20C 109.5
O6—C9—C10 119.36 (13) H20A—C20—H20C 109.5
O6—C9—C8 118.73 (12) H20B—C20—H20C 109.5
C10—C9—C8 121.70 (12) C22—C21—C10 114.13 (13)
C9—C10—C11 118.61 (13) C22—C21—H21A 108.7
C9—C10—C21 117.73 (12) C10—C21—H21A 108.7
C11—C10—C21 123.44 (12) C22—C21—H21B 108.7
C6—C11—C10 117.87 (12) C10—C21—H21B 108.7
C6—C11—C12 118.90 (12) H21A—C21—H21B 107.6
C10—C11—C12 123.20 (12) C23—C22—C21 125.71 (16)
O2—C12—C13 124.11 (12) C23—C22—H22A 117.1
O2—C12—C11 120.20 (12) C21—C22—H22A 117.1
C13—C12—C11 115.69 (12) C22—C23—C24 124.58 (17)
C5—C13—C1 116.31 (12) C22—C23—C25 119.59 (18)
C5—C13—C12 119.45 (12) C24—C23—C25 115.83 (15)
C1—C13—C12 124.24 (12) C23—C24—H24A 109.5
O3—C14—C17 104.25 (12) C23—C24—H24B 109.5
O3—C14—C15 109.29 (11) H24A—C24—H24B 109.5
C17—C14—C15 111.26 (12) C23—C24—H24C 109.5
O3—C14—C18 107.36 (11) H24A—C24—H24C 109.5
C17—C14—C18 111.32 (13) H24B—C24—H24C 109.5
C15—C14—C18 112.91 (13) C23—C25—H25A 109.5
C16—C15—C14 111.83 (12) C23—C25—H25B 109.5
C16—C15—H15A 109.3 H25A—C25—H25B 109.5
C14—C15—H15A 109.3 C23—C25—H25C 109.5
C16—C15—H15B 109.3 H25A—C25—H25C 109.5
C14—C15—H15B 109.3 H25B—C25—H25C 109.5
C14—O3—C1—C2 −18.47 (18) O1—C6—C11—C12 −4.4 (2)
C14—O3—C1—C13 163.92 (11) C7—C6—C11—C12 175.70 (12)
O3—C1—C2—C3 −178.12 (12) C9—C10—C11—C6 5.0 (2)
C13—C1—C2—C3 −0.63 (19) C21—C10—C11—C6 −169.51 (13)
O3—C1—C2—C16 0.9 (2) C9—C10—C11—C12 −173.19 (13)
C13—C1—C2—C16 178.37 (12) C21—C10—C11—C12 12.3 (2)
C19—O4—C3—C4 1.79 (19) C6—C11—C12—O2 −165.46 (13)
C19—O4—C3—C2 −177.51 (12) C10—C11—C12—O2 12.8 (2)
C1—C2—C3—O4 177.28 (11) C6—C11—C12—C13 13.96 (18)
C16—C2—C3—O4 −1.74 (18) C10—C11—C12—C13 −167.83 (12)
C1—C2—C3—C4 −2.0 (2) O1—C5—C13—C1 178.29 (12)
C16—C2—C3—C4 178.95 (12) C4—C5—C13—C1 −1.0 (2)
O4—C3—C4—C5 −176.20 (12) O1—C5—C13—C12 −1.69 (19)
C2—C3—C4—C5 3.0 (2) C4—C5—C13—C12 179.04 (13)
C6—O1—C5—C4 −168.53 (12) O3—C1—C13—C5 179.69 (11)
C6—O1—C5—C13 12.13 (19) C2—C1—C13—C5 2.05 (19)
C3—C4—C5—O1 179.18 (12) O3—C1—C13—C12 −0.32 (19)
C3—C4—C5—C13 −1.5 (2) C2—C1—C13—C12 −177.96 (13)
C5—O1—C6—C7 170.98 (11) O2—C12—C13—C5 168.33 (13)
C5—O1—C6—C11 −8.95 (19) C11—C12—C13—C5 −11.06 (18)
O1—C6—C7—C8 179.30 (12) O2—C12—C13—C1 −11.6 (2)
C11—C6—C7—C8 −0.8 (2) C11—C12—C13—C1 168.96 (12)
C6—C7—C8—O5 −178.50 (12) C1—O3—C14—C17 165.58 (12)
C6—C7—C8—C9 1.6 (2) C1—O3—C14—C15 46.56 (16)
C20—O6—C9—C10 −104.50 (15) C1—O3—C14—C18 −76.23 (15)
C20—O6—C9—C8 80.63 (15) O3—C14—C15—C16 −58.35 (16)
O5—C8—C9—O6 −4.17 (19) C17—C14—C15—C16 −172.94 (12)
C7—C8—C9—O6 175.69 (12) C18—C14—C15—C16 61.06 (16)
O5—C8—C9—C10 −178.92 (12) C1—C2—C16—C15 −13.47 (18)
C7—C8—C9—C10 0.9 (2) C3—C2—C16—C15 165.52 (12)
O6—C9—C10—C11 −179.05 (12) C14—C15—C16—C2 41.79 (16)
C8—C9—C10—C11 −4.3 (2) C9—C10—C21—C22 87.47 (16)
O6—C9—C10—C21 −4.18 (19) C11—C10—C21—C22 −97.93 (16)
C8—C9—C10—C21 170.53 (13) C10—C21—C22—C23 −124.59 (16)
O1—C6—C11—C10 177.31 (12) C21—C22—C23—C24 2.4 (3)
C7—C6—C11—C10 −2.6 (2) C21—C22—C23—C25 −177.60 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1O5···O2i 0.90 1.77 2.6082 (17) 155
C15—H15A···O1ii 0.99 2.55 3.3820 (18) 141
C20—H20C···O5 0.98 2.57 3.104 (2) 115
C21—H21A···O2 0.99 2.29 2.807 (2) 111

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2760).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bennett, G. J. & Lee, H.-H. (1989). Phytochemistry, 28, 967–998.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2010). Chem. Pharm. Bull 58, 386–389. [DOI] [PubMed]
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst E61, o2136–o2138.
  7. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997). J. Nat. Prod. 60, 519–524. [DOI] [PubMed]
  10. Ho, C. K., Huang, Y. L. & Chen, C. C. (2002). Planta Med. 68, 975–979. [DOI] [PubMed]
  11. Mahabusarakam, W., Wiriyachitra, P. & Taylor, W. C. (1987). J. Nat. Prod. 50, 474–478.
  12. Obolskiy, D., Pischel, I., Siriwatanametanon, N. & Heinrich, M. (2009). Phytother. Res. 23, 1047–1065. [DOI] [PubMed]
  13. Phongpaichit, S., Ongsakul, M., Nilrat, L., Tharavichitkul, P., Bunchoo, S., Chauprapaisilp, T. & Wiriyachitra, P. (1994). Songklanakarin J. Sci. Technol. 16, 399–405.
  14. Shankaranarayan, D., Gopalakrishnan, C. & Kameswaran, L. (1979). Arch. Int. Pharmacodyn. Ther. 239, 257–269. [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Yoshikawa, M., Harada, E., Miki, A., Tsukamoto, K., Si Quian, L., Yamahara, J. & Murakami, N. (1994). Yakugaku Zasshi, 114, 129–133.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023409/rz2760sup1.cif

e-68-o1950-sup1.cif (32KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023409/rz2760Isup2.hkl

e-68-o1950-Isup2.hkl (275.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023409/rz2760Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES