Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1952. doi: 10.1107/S1600536812021241

2-Azido-1-(4-nitro­phen­yl)ethanone

Sammer Yousuf a,*, Muhammad Arshad a,b, Hafiza Madiha Butt a, Sumayya Saeed b, Fatima Z Basha a,
PMCID: PMC3379503  PMID: 22719701

Abstract

In the title compound, C8H6N4O3, the ketone [C—C(=O)—C] and nitro groups are tilted with respect to the benzene ring by 18.92 (6) and 24.11 (15)°, respectively. In the crystal, mol­ecules are linked into inter­woven chains running parallel to the [100] direction by C—H⋯N hydrogen bonds and weak π–π stacking inter­actions, with centroid–centroid separations of 3.897 (3) Å.

Related literature  

For the crystal structure of the related compound 2-azido-1-(4-fluoro­phen­yl)ethanone, see: Yousuf et al. (2012). For the biological activities of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994). graphic file with name e-68-o1952-scheme1.jpg

Experimental  

Crystal data  

  • C8H6N4O3

  • M r = 206.17

  • Orthorhombic, Inline graphic

  • a = 7.6307 (5) Å

  • b = 9.5168 (6) Å

  • c = 12.4097 (8) Å

  • V = 901.19 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.50 × 0.23 × 0.11 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.942, T max = 0.987

  • 4914 measured reflections

  • 1649 independent reflections

  • 1461 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.074

  • S = 1.06

  • 1649 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983), 767 Friedel pairs

  • Flack parameter: 0.2 (14)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021241/rz2752sup1.cif

e-68-o1952-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021241/rz2752Isup2.hkl

e-68-o1952-Isup2.hkl (81.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021241/rz2752Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N2i 0.97 2.48 3.422 (3) 165

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound was obtained as intermediate during an attempt to synthesize new triazoles, an important class of organic compounds with a wide range of biological activities (Genin et al., 2000; Parmee et al., 2000; Koble et al., 1995; Moltzen et al., 1994).

The structure of the title compound (Fig. 1) is similar to that of our recently published compound 2-azido-1-(4-fluorophenyl)ethanone (Yousuf et al., 2012) with the difference that the fluorophenyl ring is replaced by a nitrobenzene ring. The benzene ring forms dihedral angles of 18.92 (6) and 24.11 (15)° with the planes through the ketone (O3/C3/C7/C8) and nitro (N1/O1/O2) groups, respectively. The azide group is not linear (N3–N2–N1 = 171.7 (2)°). The bond lengths and angle are similar to those found in the previously reported compound (Yousuf et al., 2012). The crystal structure is stabilized by intermolecular C—H···N (Table 1) hydrogen bonds and π–π stacking interactions (centroid-to-centroid separations of 3.897 (3) Å) forming interwoven chains parallel to the a axis (Fig. 2).

Experimental

1-(4-Nitrophenyl)ethanone (6.05 mmoL, 1.0 eq.) was dissolved in acetonitrile (18 ml) in a round bottom flask. To the stirred mixture, p-toluene sulphonic acid (9.08 mmoL, 1.5 eq.) and N-bromosuccinimide (8.48 mmol, 1.4 eq.) were added, and then heated to reflux for 1 to 1.5 h until TLC analysis showed no starting material present in the mixture. The reaction mixture was cooled to room temperature, sodium azide (18.16 mmoL, 3.0 eq.) was added and further stirred for 2 to 3 hrs followed by the addition of the ice cooled water to quench the reaction. The reaction mixture was extracted with diethyl ether (2 × 25 ml) and the combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane 1/9–3/7 v/v) to afford the title compound in 70% yield. Recrystallization from ethanol afforded crystals suitable for single-crystal X-ray studies. All chemicals were purchased from Sigma-Aldrich.

Refinement

Methylene and aromatic H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). 765 Friedel pairs were not merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C8H6N4O3 F(000) = 424
Mr = 206.17 Dx = 1.520 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c 2ac Cell parameters from 1557 reflections
a = 7.6307 (5) Å θ = 3.3–24.2°
b = 9.5168 (6) Å µ = 0.12 mm1
c = 12.4097 (8) Å T = 273 K
V = 901.19 (10) Å3 Block, colourles
Z = 4 0.50 × 0.23 × 0.11 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1649 independent reflections
Radiation source: fine-focus sealed tube 1461 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scan θmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→9
Tmin = 0.942, Tmax = 0.987 k = −11→11
4914 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.0663P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1649 reflections Δρmax = 0.11 e Å3
136 parameters Δρmin = −0.11 e Å3
1 restraint Absolute structure: Flack (1983), 767 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.2 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9428 (3) 1.19359 (17) 0.40028 (13) 0.0815 (5)
O2 0.9798 (2) 1.30833 (17) 0.54808 (15) 0.0744 (5)
O3 0.6676 (2) 0.72287 (15) 0.81581 (12) 0.0673 (4)
N1 0.9448 (2) 1.20158 (19) 0.49879 (14) 0.0553 (5)
N2 0.7720 (3) 0.45389 (18) 0.76819 (14) 0.0603 (5)
N3 0.8183 (2) 0.45144 (17) 0.86298 (15) 0.0553 (4)
N4 0.8503 (3) 0.4344 (2) 0.95022 (17) 0.0740 (6)
C1 0.9238 (2) 0.9459 (2) 0.51250 (14) 0.0478 (5)
H1A 0.9657 0.9388 0.4423 0.057*
C2 0.8824 (3) 0.8273 (2) 0.57102 (15) 0.0472 (5)
H2B 0.8991 0.7389 0.5407 0.057*
C3 0.8160 (2) 0.83847 (19) 0.67466 (14) 0.0418 (4)
C4 0.7943 (2) 0.9715 (2) 0.71966 (14) 0.0474 (5)
H4A 0.7489 0.9796 0.7889 0.057*
C5 0.8386 (2) 1.0906 (2) 0.66373 (16) 0.0482 (4)
H5A 0.8264 1.1791 0.6946 0.058*
C6 0.9017 (2) 1.0752 (2) 0.56038 (14) 0.0438 (4)
C7 0.7632 (3) 0.7125 (2) 0.73869 (14) 0.0459 (4)
C8 0.8367 (3) 0.57217 (19) 0.70483 (15) 0.0520 (5)
H8A 0.8079 0.5563 0.6297 0.062*
H8B 0.9634 0.5754 0.7107 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1121 (14) 0.0726 (11) 0.0598 (10) −0.0001 (10) 0.0104 (9) 0.0177 (8)
O2 0.0870 (11) 0.0473 (9) 0.0889 (12) −0.0090 (8) −0.0091 (10) 0.0089 (9)
O3 0.0804 (11) 0.0609 (9) 0.0606 (8) −0.0032 (7) 0.0250 (8) 0.0022 (7)
N1 0.0540 (10) 0.0514 (12) 0.0607 (12) 0.0034 (8) −0.0015 (9) 0.0086 (9)
N2 0.0725 (12) 0.0476 (10) 0.0607 (10) −0.0110 (9) −0.0118 (9) 0.0040 (8)
N3 0.0606 (11) 0.0435 (9) 0.0617 (11) −0.0068 (8) −0.0014 (9) 0.0033 (8)
N4 0.0883 (14) 0.0733 (14) 0.0603 (11) −0.0078 (11) −0.0024 (11) 0.0088 (10)
C1 0.0507 (10) 0.0538 (13) 0.0390 (9) 0.0025 (9) 0.0020 (8) −0.0012 (9)
C2 0.0520 (10) 0.0424 (11) 0.0472 (10) 0.0023 (9) 0.0000 (9) −0.0059 (8)
C3 0.0402 (9) 0.0447 (11) 0.0406 (9) −0.0012 (8) −0.0020 (8) −0.0021 (8)
C4 0.0498 (10) 0.0512 (12) 0.0413 (9) −0.0013 (9) 0.0033 (8) −0.0052 (9)
C5 0.0510 (10) 0.0419 (11) 0.0516 (10) 0.0002 (8) −0.0032 (9) −0.0080 (9)
C6 0.0399 (9) 0.0439 (11) 0.0475 (9) −0.0005 (8) −0.0050 (8) 0.0046 (9)
C7 0.0460 (9) 0.0490 (11) 0.0426 (9) −0.0047 (9) −0.0030 (9) −0.0025 (8)
C8 0.0594 (12) 0.0456 (12) 0.0510 (10) −0.0008 (10) −0.0012 (10) 0.0031 (9)

Geometric parameters (Å, º)

O1—N1 1.225 (2) C2—H2B 0.9300
O2—N1 1.216 (2) C3—C4 1.393 (3)
O3—C7 1.207 (2) C3—C7 1.493 (3)
N1—C6 1.462 (2) C4—C5 1.372 (3)
N2—N3 1.229 (2) C4—H4A 0.9300
N2—C8 1.459 (2) C5—C6 1.378 (3)
N3—N4 1.122 (2) C5—H5A 0.9300
C1—C6 1.377 (3) C7—C8 1.508 (3)
C1—C2 1.379 (3) C8—H8A 0.9700
C1—H1A 0.9300 C8—H8B 0.9700
C2—C3 1.386 (2)
O2—N1—O1 123.83 (18) C3—C4—H4A 119.4
O2—N1—C6 118.28 (16) C4—C5—C6 118.00 (18)
O1—N1—C6 117.89 (18) C4—C5—H5A 121.0
N3—N2—C8 115.67 (17) C6—C5—H5A 121.0
N4—N3—N2 171.7 (2) C1—C6—C5 122.64 (18)
C6—C1—C2 118.44 (17) C1—C6—N1 118.80 (16)
C6—C1—H1A 120.8 C5—C6—N1 118.55 (18)
C2—C1—H1A 120.8 O3—C7—C3 121.29 (19)
C1—C2—C3 120.62 (18) O3—C7—C8 121.17 (19)
C1—C2—H2B 119.7 C3—C7—C8 117.52 (15)
C3—C2—H2B 119.7 N2—C8—C7 114.03 (16)
C2—C3—C4 119.02 (17) N2—C8—H8A 108.7
C2—C3—C7 122.04 (17) C7—C8—H8A 108.7
C4—C3—C7 118.93 (15) N2—C8—H8B 108.7
C5—C4—C3 121.25 (16) C7—C8—H8B 108.7
C5—C4—H4A 119.4 H8A—C8—H8B 107.6
C8—N2—N3—N4 −176.5 (17) O2—N1—C6—C1 −156.72 (18)
C6—C1—C2—C3 1.5 (3) O1—N1—C6—C1 23.6 (2)
C1—C2—C3—C4 −1.0 (3) O2—N1—C6—C5 24.0 (2)
C1—C2—C3—C7 177.54 (16) O1—N1—C6—C5 −155.73 (18)
C2—C3—C4—C5 −0.6 (3) C2—C3—C7—O3 −161.46 (19)
C7—C3—C4—C5 −179.14 (16) C4—C3—C7—O3 17.1 (3)
C3—C4—C5—C6 1.5 (3) C2—C3—C7—C8 19.8 (2)
C2—C1—C6—C5 −0.6 (3) C4—C3—C7—C8 −161.67 (16)
C2—C1—C6—N1 −179.83 (16) N3—N2—C8—C7 −67.2 (3)
C4—C5—C6—C1 −0.9 (3) O3—C7—C8—N2 4.1 (3)
C4—C5—C6—N1 178.33 (16) C3—C7—C8—N2 −177.17 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8B···N2i 0.97 2.48 3.422 (3) 165

Symmetry code: (i) x+1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2752).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Genin, M. J., et al. (2000). J. Med. Chem. 43, 953–970. [DOI] [PubMed]
  4. Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131–4134. [DOI] [PubMed]
  5. Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085–4099. [DOI] [PubMed]
  6. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  7. Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Yousuf, S., Arshad, M., Butt, H. M., Saeed, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1268. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812021241/rz2752sup1.cif

e-68-o1952-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812021241/rz2752Isup2.hkl

e-68-o1952-Isup2.hkl (81.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812021241/rz2752Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES