Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1953. doi: 10.1107/S160053681202418X

1-Methyl-2-({[(2-methyl­phen­yl)meth­yl]disulfan­yl}meth­yl)benzene

Shahedeh Tayamon a, Thahira Begum S A Ravoof a, Mohamed Ibrahim Mohamed Tahir a, Karen A Crouse a,, Edward R T Tiekink b,*
PMCID: PMC3379504  PMID: 22719702

Abstract

In the title disulfide, C16H18S2, the mol­ecule is twisted about the central S—S bond [the C—S—S—C torsion angle = 93.24 (7)°] and the dihedral angle between the benzene rings is 72.84 (7)°, indicating an almost orthogonal relationship; the methyl groups are orientated to the same side of the mol­ecule. The crystal packing features C—H⋯.π inter­actions which consolidate a three-dimensional architecture.

Related literature  

For background to the coordination chemistry of dithio­carbazate derivatives, see: Crouse et al. (2004); Ravoof et al. (2010). For the synthesis and methodology, see: Tarafder et al. (2000). For the structure of bis­(benz­yl)disulfide, see: van Dijk & Visser (1971).graphic file with name e-68-o1953-scheme1.jpg

Experimental  

Crystal data  

  • C16H18S2

  • M r = 274.42

  • Monoclinic, Inline graphic

  • a = 10.3640 (4) Å

  • b = 7.6408 (3) Å

  • c = 18.1106 (7) Å

  • β = 91.099 (3)°

  • V = 1433.90 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.18 mm−1

  • T = 100 K

  • 0.56 × 0.38 × 0.21 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.299, T max = 0.513

  • 9993 measured reflections

  • 2773 independent reflections

  • 2672 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.096

  • S = 1.06

  • 2773 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202418X/hb6818sup1.cif

e-68-o1953-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202418X/hb6818Isup2.hkl

e-68-o1953-Isup2.hkl (133.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202418X/hb6818Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1BCg1i 0.99 2.91 3.4605 (16) 116
C16—H16BCg2ii 0.98 2.85 3.7392 (18) 151
C16—H16CCg1iii 0.98 2.97 3.7764 (18) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Support for the project came from Universiti Putra Malaysia (UPM) through the purchase of the diffractometer and under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-13-11-986FR). The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Our interest in investigating the coordination properties of ligands containing the H—N—C═S moiety and our desire to expand the study of this class of biologically important compounds has lead us to synthesize series of related ligands (Tarafder et al., 2000; Crouse et al., 2004; Ravoof et al., 2010). The title compound, [(2-methyl)benzyl]disulfide, (I), was obtained during the attempt to prepare the phenyl hydrazine analogue of S-benzyldithiocarbazate.

In (I), Fig. 1, the molecule is twisted about the central S1—S2 bond as seen in the value of the C1—S1—S2—C9 torsion angle of 93.24 (7) Å. The dihedral between the benzene rings is 72.84 (7)°, indicating an almost orthogonal relationship, and the methyl groups are orientated to the same side of the molecule. The overall conformation in (I) contrasts that found in the parent compound, bis(benzyl)disulfide (van Dijk & Visser, 1971), which adopts an open conformation with both phenyl rings directed away from the sulfur atoms. In (I), the S1-bound benzyl is directed away having an anti disposition [the S2—S1—C1—C2 torsion angle is 176.23 (9)°] whereas the S2-bound benzyl residue in bis(benzyl)disulfide (van Dijk & Visser, 1971) has a syn conformation [S1—C1—C2—C7 = 91.90 (14)°].

The crystal packing is dominated by C—H···.π interactions, Table 1, which consolidates a three-dimensional architecture, Fig. 2.

Experimental

[(2-Methyl)benzyl]disulfide was isolated as a by-product from the synthesis of the phenylhydrazine analog of S-benzyldithiocarbazate (Tarafder et al., 2000). Potassium hydroxide (0.2 mol, 11.2 g) was completely dissolved in absolute ethanol (70 ml) and phenylhydrazine (0.2 mol, 21.6 g) was added to the solution cooled in an ice-salt bath producing a dark-yellow solution. Carbon disulfide (0.2 mol, 15.2 g) was added drop-wise with constant stirring over one hour. 2-Methylbenzyl chloride (0.1 mol, 13.2 ml) was then added drop-wise with vigorous stirring. The temperature of reaction was maintained below 278 K. The high yield yellow-white product was filtered and dried in a dessicator over anhydrous silica gel, dissolved in absolute ethanol and kept in a freezer. A few colourless blocks were harvested on the third day and washed with cold n-hexane.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the b axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines.

Crystal data

C16H18S2 F(000) = 584
Mr = 274.42 Dx = 1.271 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 5536 reflections
a = 10.3640 (4) Å θ = 4–71°
b = 7.6408 (3) Å µ = 3.18 mm1
c = 18.1106 (7) Å T = 100 K
β = 91.099 (3)° Block, colourless
V = 1433.90 (10) Å3 0.56 × 0.38 × 0.21 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 2773 independent reflections
Radiation source: fine-focus sealed tube 2672 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.1952 pixels mm-1 θmax = 71.6°, θmin = 4.3°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −8→9
Tmin = 0.299, Tmax = 0.513 l = −21→22
9993 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.5578P] where P = (Fo2 + 2Fc2)/3
2773 reflections (Δ/σ)max = 0.001
165 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.19303 (3) 0.79536 (5) 0.531391 (19) 0.01839 (13)
S2 0.16204 (3) 0.97650 (5) 0.450468 (19) 0.01857 (13)
C1 0.32793 (14) 0.6661 (2) 0.49591 (8) 0.0197 (3)
H1A 0.3014 0.6058 0.4497 0.024*
H1B 0.4019 0.7435 0.4853 0.024*
C2 0.36554 (14) 0.5340 (2) 0.55430 (8) 0.0175 (3)
C3 0.45586 (14) 0.5739 (2) 0.61072 (8) 0.0190 (3)
C4 0.48816 (15) 0.4427 (2) 0.66150 (8) 0.0231 (3)
H4 0.5498 0.4670 0.6996 0.028*
C5 0.43266 (16) 0.2782 (2) 0.65765 (9) 0.0252 (4)
H5 0.4571 0.1908 0.6925 0.030*
C6 0.34159 (17) 0.2409 (2) 0.60306 (10) 0.0254 (3)
H6 0.3022 0.1287 0.6007 0.030*
C7 0.30838 (15) 0.3688 (2) 0.55173 (8) 0.0216 (3)
H7 0.2457 0.3434 0.5143 0.026*
C8 0.51809 (16) 0.7523 (2) 0.61716 (10) 0.0258 (4)
H8A 0.5715 0.7574 0.6623 0.039*
H8B 0.4509 0.8424 0.6191 0.039*
H8C 0.5722 0.7729 0.5742 0.039*
C9 0.03670 (14) 0.8731 (2) 0.39237 (8) 0.0197 (3)
H9A −0.0361 0.8389 0.4239 0.024*
H9B 0.0039 0.9600 0.3561 0.024*
C10 0.08223 (14) 0.71442 (19) 0.35152 (8) 0.0168 (3)
C11 0.15632 (14) 0.7299 (2) 0.28736 (8) 0.0187 (3)
C12 0.19310 (14) 0.5778 (2) 0.25128 (9) 0.0232 (3)
H12 0.2407 0.5869 0.2071 0.028*
C13 0.16219 (16) 0.4131 (2) 0.27805 (9) 0.0265 (4)
H13 0.1895 0.3111 0.2528 0.032*
C14 0.09121 (16) 0.3982 (2) 0.34191 (10) 0.0262 (4)
H14 0.0706 0.2861 0.3610 0.031*
C15 0.05054 (15) 0.5485 (2) 0.37768 (9) 0.0209 (3)
H15 0.0002 0.5382 0.4208 0.025*
C16 0.19659 (16) 0.9069 (2) 0.25888 (9) 0.0263 (4)
H16A 0.2582 0.9603 0.2939 0.039*
H16B 0.1205 0.9822 0.2534 0.039*
H16C 0.2373 0.8930 0.2108 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0218 (2) 0.0188 (2) 0.0146 (2) 0.00273 (13) 0.00327 (14) −0.00021 (12)
S2 0.0244 (2) 0.0138 (2) 0.0175 (2) −0.00018 (13) −0.00079 (14) −0.00113 (12)
C1 0.0196 (7) 0.0225 (8) 0.0173 (7) 0.0042 (6) 0.0039 (5) −0.0003 (6)
C2 0.0176 (7) 0.0187 (8) 0.0164 (7) 0.0027 (6) 0.0046 (5) −0.0009 (5)
C3 0.0176 (7) 0.0222 (8) 0.0175 (7) 0.0020 (6) 0.0036 (5) −0.0031 (6)
C4 0.0223 (7) 0.0301 (9) 0.0169 (7) 0.0060 (6) 0.0009 (6) −0.0017 (6)
C5 0.0297 (8) 0.0245 (9) 0.0217 (8) 0.0077 (6) 0.0065 (6) 0.0058 (6)
C6 0.0290 (8) 0.0188 (8) 0.0285 (8) −0.0014 (6) 0.0074 (7) 0.0007 (6)
C7 0.0206 (7) 0.0231 (8) 0.0211 (7) 0.0001 (6) 0.0019 (6) −0.0029 (6)
C8 0.0257 (8) 0.0254 (9) 0.0263 (8) −0.0030 (7) −0.0003 (6) −0.0047 (7)
C9 0.0194 (7) 0.0202 (8) 0.0194 (7) 0.0015 (6) −0.0010 (5) −0.0025 (6)
C10 0.0167 (7) 0.0182 (8) 0.0155 (7) 0.0006 (5) −0.0024 (5) −0.0006 (5)
C11 0.0167 (7) 0.0221 (8) 0.0171 (7) −0.0019 (6) −0.0023 (5) −0.0001 (6)
C12 0.0186 (7) 0.0313 (9) 0.0196 (7) 0.0003 (6) 0.0000 (6) −0.0070 (6)
C13 0.0249 (8) 0.0229 (9) 0.0316 (9) 0.0054 (6) −0.0061 (6) −0.0096 (7)
C14 0.0306 (8) 0.0151 (8) 0.0325 (9) −0.0022 (6) −0.0087 (7) 0.0021 (6)
C15 0.0228 (7) 0.0216 (8) 0.0184 (7) −0.0031 (6) −0.0017 (6) 0.0023 (6)
C16 0.0305 (8) 0.0281 (9) 0.0203 (8) −0.0084 (7) 0.0024 (6) 0.0026 (6)

Geometric parameters (Å, º)

S1—C1 1.8377 (15) C8—H8C 0.9800
S1—S2 2.0368 (5) C9—C10 1.501 (2)
S2—C9 1.8349 (15) C9—H9A 0.9900
C1—C2 1.508 (2) C9—H9B 0.9900
C1—H1A 0.9900 C10—C15 1.395 (2)
C1—H1B 0.9900 C10—C11 1.410 (2)
C2—C7 1.395 (2) C11—C12 1.390 (2)
C2—C3 1.406 (2) C11—C16 1.509 (2)
C3—C4 1.397 (2) C12—C13 1.389 (3)
C3—C8 1.511 (2) C12—H12 0.9500
C4—C5 1.384 (2) C13—C14 1.387 (3)
C4—H4 0.9500 C13—H13 0.9500
C5—C6 1.383 (3) C14—C15 1.388 (2)
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.387 (2) C15—H15 0.9500
C6—H6 0.9500 C16—H16A 0.9800
C7—H7 0.9500 C16—H16B 0.9800
C8—H8A 0.9800 C16—H16C 0.9800
C8—H8B 0.9800
C1—S1—S2 102.94 (5) H8B—C8—H8C 109.5
C9—S2—S1 102.71 (5) C10—C9—S2 113.87 (10)
C2—C1—S1 107.61 (10) C10—C9—H9A 108.8
C2—C1—H1A 110.2 S2—C9—H9A 108.8
S1—C1—H1A 110.2 C10—C9—H9B 108.8
C2—C1—H1B 110.2 S2—C9—H9B 108.8
S1—C1—H1B 110.2 H9A—C9—H9B 107.7
H1A—C1—H1B 108.5 C15—C10—C11 119.47 (14)
C7—C2—C3 119.79 (14) C15—C10—C9 119.22 (14)
C7—C2—C1 118.60 (14) C11—C10—C9 121.31 (13)
C3—C2—C1 121.61 (14) C12—C11—C10 118.41 (14)
C4—C3—C2 118.07 (15) C12—C11—C16 120.55 (14)
C4—C3—C8 120.01 (14) C10—C11—C16 121.04 (14)
C2—C3—C8 121.92 (14) C13—C12—C11 121.77 (15)
C5—C4—C3 121.66 (15) C13—C12—H12 119.1
C5—C4—H4 119.2 C11—C12—H12 119.1
C3—C4—H4 119.2 C14—C13—C12 119.66 (15)
C4—C5—C6 120.03 (15) C14—C13—H13 120.2
C4—C5—H5 120.0 C12—C13—H13 120.2
C6—C5—H5 120.0 C13—C14—C15 119.47 (15)
C5—C6—C7 119.40 (16) C13—C14—H14 120.3
C5—C6—H6 120.3 C15—C14—H14 120.3
C7—C6—H6 120.3 C14—C15—C10 121.18 (15)
C6—C7—C2 121.02 (15) C14—C15—H15 119.4
C6—C7—H7 119.5 C10—C15—H15 119.4
C2—C7—H7 119.5 C11—C16—H16A 109.5
C3—C8—H8A 109.5 C11—C16—H16B 109.5
C3—C8—H8B 109.5 H16A—C16—H16B 109.5
H8A—C8—H8B 109.5 C11—C16—H16C 109.5
C3—C8—H8C 109.5 H16A—C16—H16C 109.5
H8A—C8—H8C 109.5 H16B—C16—H16C 109.5
C1—S1—S2—C9 93.24 (7) S1—S2—C9—C10 −68.30 (11)
S2—S1—C1—C2 176.23 (9) S2—C9—C10—C15 102.14 (14)
S1—C1—C2—C7 91.90 (14) S2—C9—C10—C11 −77.83 (16)
S1—C1—C2—C3 −87.97 (15) C15—C10—C11—C12 1.4 (2)
C7—C2—C3—C4 1.9 (2) C9—C10—C11—C12 −178.67 (13)
C1—C2—C3—C4 −178.24 (13) C15—C10—C11—C16 −177.79 (14)
C7—C2—C3—C8 −178.44 (14) C9—C10—C11—C16 2.2 (2)
C1—C2—C3—C8 1.4 (2) C10—C11—C12—C13 −2.0 (2)
C2—C3—C4—C5 −0.7 (2) C16—C11—C12—C13 177.16 (14)
C8—C3—C4—C5 179.60 (15) C11—C12—C13—C14 0.9 (2)
C3—C4—C5—C6 −0.8 (2) C12—C13—C14—C15 0.9 (2)
C4—C5—C6—C7 1.1 (2) C13—C14—C15—C10 −1.5 (2)
C5—C6—C7—C2 0.1 (2) C11—C10—C15—C14 0.4 (2)
C3—C2—C7—C6 −1.6 (2) C9—C10—C15—C14 −179.62 (14)
C1—C2—C7—C6 178.51 (14)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1B···Cg1i 0.99 2.91 3.4605 (16) 116
C16—H16B···Cg2ii 0.98 2.85 3.7392 (18) 151
C16—H16C···Cg1iii 0.98 2.97 3.7764 (18) 140

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6818).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168.
  4. Dijk, B. van & Visser, G. J. (1971). Acta Cryst. B27, 846.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem 25, 456–460.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202418X/hb6818sup1.cif

e-68-o1953-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202418X/hb6818Isup2.hkl

e-68-o1953-Isup2.hkl (133.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202418X/hb6818Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES