Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1959. doi: 10.1107/S1600536812022088

3,8-Dimethyl-4-oxo-3,4-dihydro­quinazoline-6-carbonitrile

Hai-Yan Tian a, Jian-Cong Bi a,*, Hong-Xia Zhang a, Juan Zhang a
PMCID: PMC3379508  PMID: 22719706

Abstract

In the title compound, C11H9N3O, the quinazoline unit is almost planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the ten constituent atoms. In the crystal, mol­ecules are linked by weak C—H⋯N hydrogen bonds.

Related literature  

For the synthesis of the title compound, see: Shapiro et al. (2006).graphic file with name e-68-o1959-scheme1.jpg

Experimental  

Crystal data  

  • C11H9N3O

  • M r = 199.21

  • Orthorhombic, Inline graphic

  • a = 7.0700 (14) Å

  • b = 13.441 (3) Å

  • c = 10.156 (2) Å

  • V = 965.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.25 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.960, T max = 0.977

  • 8874 measured reflections

  • 1162 independent reflections

  • 1054 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.07

  • 1162 reflections

  • 138 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022088/lx2242sup1.cif

e-68-o1959-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022088/lx2242Isup2.hkl

e-68-o1959-Isup2.hkl (57.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022088/lx2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1i 0.93 2.58 3.431 (3) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Harbin University of Science and Technology and Heilongjiang Institute of Science and Technology for supporting this work.

supplementary crystallographic information

Comment

Anthranilic diamide compounds are known as new broad spectrum pesticides, which are developed and produced by E.I.Du Pont Company. The title compound is an important intermediate of this kind of pesticides. Herein, we report the crystal structure of the title compound. The title compound crystallizes as the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms.

In the title molecule (Fig. 1), the quinazoline unit is almost planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the ten constituent atoms. In the crystal structure, molecules are connected by weak intermolecular C—H···N hydrogen bonds (Table 1).

Experimental

The title compound was prepared by the reaction of N-methyl-2-amino-5-cyano-3-methylbenzamide and NaCN in DMSO under reflux conditions (Shapiro et al., 2006). Single crystals suitable for X-ray diffraction were obtained by recrystallization of the title compound from ethyl acetate.

Refinement

All the Friedel pairs were merged. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.96 Å (aromatic / methyl), and with Uiso(H) = 1.2 / 1.5 Ueq(C) (aromatic / methyl). The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C11H9N3O F(000) = 416
Mr = 199.21 Dx = 1.371 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8275 reflections
a = 7.0700 (14) Å θ = 3.0–27.5°
b = 13.441 (3) Å µ = 0.09 mm1
c = 10.156 (2) Å T = 293 K
V = 965.1 (3) Å3 Blcok, colorless
Z = 4 0.45 × 0.30 × 0.25 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 1162 independent reflections
Radiation source: fine-focus sealed tube 1054 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω scan θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→8
Tmin = 0.960, Tmax = 0.977 k = −17→17
8874 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: difference Fourier map
wR(F2) = 0.095 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.0037P] where P = (Fo2 + 2Fc2)/3
1162 reflections (Δ/σ)max < 0.001
138 parameters Δρmax = 0.22 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1413 (2) 0.27920 (15) −0.02167 (19) 0.0378 (4)
C2 0.1206 (3) 0.37812 (15) 0.02217 (19) 0.0396 (4)
H2 0.1394 0.4300 −0.0370 0.048*
C3 0.0734 (2) 0.39952 (12) 0.1495 (2) 0.0370 (4)
C4 0.0470 (2) 0.31970 (13) 0.23889 (19) 0.0310 (3)
C5 0.0689 (2) 0.22115 (12) 0.19457 (18) 0.0323 (4)
C6 0.1155 (2) 0.20073 (14) 0.06421 (19) 0.0370 (4)
H6 0.1290 0.1354 0.0355 0.044*
C7 0.0396 (2) 0.13796 (13) 0.28618 (19) 0.0359 (4)
C8 −0.0271 (3) 0.26620 (13) 0.44539 (19) 0.0381 (4)
H8 −0.0603 0.2803 0.5320 0.046*
C9 0.1888 (3) 0.25977 (17) −0.1578 (2) 0.0446 (5)
C10 0.0482 (4) 0.50555 (16) 0.1950 (3) 0.0545 (6)
H10A 0.0682 0.5499 0.1222 0.082*
H10B 0.1382 0.5200 0.2632 0.082*
H10C −0.0776 0.5143 0.2285 0.082*
C11 −0.0442 (4) 0.09042 (15) 0.5119 (2) 0.0525 (6)
H11A −0.0593 0.1209 0.5968 0.079*
H11B 0.0612 0.0454 0.5142 0.079*
H11C −0.1570 0.0544 0.4897 0.079*
N1 0.2256 (3) 0.24416 (16) −0.2643 (2) 0.0609 (5)
N2 −0.0095 (2) 0.16788 (11) 0.41248 (17) 0.0370 (4)
N3 −0.0021 (2) 0.34132 (12) 0.36812 (16) 0.0375 (4)
O1 0.0553 (2) 0.05017 (10) 0.25774 (18) 0.0547 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0338 (8) 0.0531 (10) 0.0265 (9) −0.0022 (8) 0.0019 (7) −0.0016 (8)
C2 0.0431 (9) 0.0448 (9) 0.0309 (9) −0.0036 (7) 0.0018 (7) 0.0083 (7)
C3 0.0401 (8) 0.0352 (8) 0.0356 (10) −0.0020 (7) 0.0015 (7) 0.0033 (8)
C4 0.0323 (7) 0.0332 (8) 0.0276 (8) −0.0002 (6) 0.0006 (6) −0.0011 (6)
C5 0.0316 (7) 0.0349 (8) 0.0304 (9) −0.0007 (6) −0.0001 (6) −0.0017 (7)
C6 0.0385 (9) 0.0392 (8) 0.0332 (10) −0.0002 (7) 0.0023 (7) −0.0057 (7)
C7 0.0402 (8) 0.0340 (8) 0.0335 (9) −0.0003 (7) 0.0007 (7) −0.0009 (7)
C8 0.0461 (9) 0.0403 (9) 0.0279 (9) 0.0028 (7) 0.0042 (7) −0.0013 (7)
C9 0.0431 (10) 0.0586 (12) 0.0321 (11) −0.0015 (9) 0.0039 (8) 0.0013 (8)
C10 0.0849 (15) 0.0336 (9) 0.0450 (12) 0.0009 (10) 0.0096 (11) 0.0033 (8)
C11 0.0754 (13) 0.0433 (10) 0.0387 (13) 0.0026 (10) 0.0104 (10) 0.0121 (9)
N1 0.0690 (12) 0.0809 (14) 0.0329 (10) 0.0012 (10) 0.0099 (9) −0.0037 (9)
N2 0.0441 (8) 0.0371 (8) 0.0298 (9) 0.0001 (6) 0.0016 (6) 0.0042 (6)
N3 0.0482 (8) 0.0356 (7) 0.0287 (9) 0.0012 (7) 0.0051 (6) −0.0023 (6)
O1 0.0816 (11) 0.0328 (6) 0.0498 (10) 0.0011 (7) 0.0053 (8) −0.0036 (6)

Geometric parameters (Å, º)

C1—C6 1.381 (3) C7—N2 1.388 (3)
C1—C2 1.410 (3) C8—N3 1.291 (2)
C1—C9 1.447 (3) C8—N2 1.369 (2)
C2—C3 1.366 (3) C8—H8 0.9300
C2—H2 0.9300 C9—N1 1.132 (3)
C3—C4 1.418 (2) C10—H10A 0.9600
C3—C10 1.508 (3) C10—H10B 0.9600
C4—N3 1.388 (2) C10—H10C 0.9600
C4—C5 1.408 (2) C11—N2 1.471 (2)
C5—C6 1.392 (3) C11—H11A 0.9600
C5—C7 1.469 (2) C11—H11B 0.9600
C6—H6 0.9300 C11—H11C 0.9600
C7—O1 1.220 (2)
C6—C1—C2 120.46 (18) N3—C8—N2 126.47 (18)
C6—C1—C9 119.78 (19) N3—C8—H8 116.8
C2—C1—C9 119.76 (19) N2—C8—H8 116.8
C3—C2—C1 121.54 (17) N1—C9—C1 179.7 (3)
C3—C2—H2 119.2 C3—C10—H10A 109.5
C1—C2—H2 119.2 C3—C10—H10B 109.5
C2—C3—C4 118.61 (17) H10A—C10—H10B 109.5
C2—C3—C10 121.16 (18) C3—C10—H10C 109.5
C4—C3—C10 120.23 (18) H10A—C10—H10C 109.5
N3—C4—C5 121.79 (16) H10B—C10—H10C 109.5
N3—C4—C3 118.67 (16) N2—C11—H11A 109.5
C5—C4—C3 119.54 (16) N2—C11—H11B 109.5
C6—C5—C4 121.05 (16) H11A—C11—H11B 109.5
C6—C5—C7 119.06 (15) N2—C11—H11C 109.5
C4—C5—C7 119.88 (16) H11A—C11—H11C 109.5
C1—C6—C5 118.80 (16) H11B—C11—H11C 109.5
C1—C6—H6 120.6 C8—N2—C7 121.87 (16)
C5—C6—H6 120.6 C8—N2—C11 120.03 (18)
O1—C7—N2 121.44 (18) C7—N2—C11 118.10 (16)
O1—C7—C5 125.00 (19) C8—N3—C4 116.43 (16)
N2—C7—C5 113.56 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···N1i 0.93 2.58 3.431 (3) 152

Symmetry code: (i) x−1/2, −y+1/2, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2242).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  3. Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  4. Shapiro, R., Taylor, E. D. & Zimmerman, W. T. (2006). World Patent No. WO2006062978.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022088/lx2242sup1.cif

e-68-o1959-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022088/lx2242Isup2.hkl

e-68-o1959-Isup2.hkl (57.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022088/lx2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES