Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1970–o1971. doi: 10.1107/S1600536812023677

2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzothia­zin-2-yl)acetic acid

Sana Aslam a, Hamid Latif Siddiqui a,*, Matloob Ahmad b, Muhammad Zia-ur-Rehman c, Masood Parvez d
PMCID: PMC3379518  PMID: 22719716

Abstract

In the title mol­ecule, C13H13N3O4S, the heterocyclic thia­zine ring adopts a half-chair conformation in which the S and an adjacent C atom are displaced by 0.919 (3) and 0.300 (4) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean planes of the benzene and pyrazole rings are inclined at a dihedral angle of 18.32 (12)° with respect to each other. The acetate group is oriented at 80.75 (8)° with respect to the pyrazole ring. The crystal structure is stabilized by O—H⋯N and C—H⋯O hydrogen bonds, resulting in fused eight- and seven-membered rings with R 2 2(8) and R 2 2(7) graph-set motifs, respectively.

Related literature  

For the biological activity of benzothia­zine derivatives, see: Turck et al. (1996); Silverstein et al. (2000); Lombardino et al. (1973); Zinnes et al. (1973); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008, 2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o1970-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O4S

  • M r = 307.32

  • Monoclinic, Inline graphic

  • a = 10.495 (4) Å

  • b = 8.415 (2) Å

  • c = 15.136 (6) Å

  • β = 91.034 (19)°

  • V = 1336.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.964, T max = 0.974

  • 5770 measured reflections

  • 3048 independent reflections

  • 2196 reflections with I > σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.110

  • S = 1.03

  • 3048 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023677/pk2415sup1.cif

e-68-o1970-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023677/pk2415Isup2.hkl

e-68-o1970-Isup2.hkl (146.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023677/pk2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯N2i 0.84 1.90 2.724 (2) 165
C9—H9A⋯O2ii 0.98 2.59 3.297 (3) 129
C5—H5⋯O4iii 0.95 2.59 3.476 (3) 155
C12—H12B⋯O3iii 0.99 2.35 3.303 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Meloxicam and Celecoxib are well known for their selective inhibition of the cox-2 enzyme that is responsible for inflammation (Turck et al., 1996; Silverstein et al., 2000). Though a number of benzothiazine based compounds have shown anti-inflammatory and analgesic character, yet there is a huge scope for selective cox-2 inhibitors in this family of heterocyclic compounds (Lombardino et al., 1973; Zinnes et al., 1973). In continuing the pursuit of potential drugs in this category, we have fused benzothiazine and pyrazole heterocycles that are core nuclei of meoxicam and celecoxib, respectively (Ahmad et al., 2010), we have synthesized and determined the crystal structure of the title compound which is presented in this paper.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a twist chair conformation with atoms S1 and C1 displaced by 0.919 (3) and 0.300 (4) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.012 for N1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 18.32 (12)° with the mean-plane of the pyrazolyl ring (N2/N3/C7/C8/C10). The mean-plane of the acetate group (O3/O4/C12/C13) lies at 80.75 (8)° with respect to the pyrazolyl ring. The crystal structure is stabilized by intermolecular hydrogen bonding interactions (Fig. 2 and Table 1). The hydrogen bonds O4—H4O···N2 and C12—H12B···O3 result in eight membered rings with a R22(8) motif while C5—H5···O4 hydrogen bonding results in a seven membered ring with a R22(7) motif (Bernstein et al., 1995); both rings are fused together and result in chains of molecules along the b-axis in a zigzag fashion. Moreover, C9—H9A···O2 interactions link the title molecules into chains along the b-axis further consolidating the crystal packing.

Experimental

3,4-Dimethyl-2,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide (5.0 g, 0.020 mole) and bromoacetic acid (3.31 g, 0.024 mole) were dissolved in anhydrous dimethyl formamide (15 ml) and anhydrous potassium carbonate (6.62 g, 0.048 mole) was added to it in small portions. The resulting reaction mixture was stirred for 2.5 h under a nitrogen atmosphere. The contents of the flask were poured over ice cold 10% HCl. Transparent crystals were grown from an aqueous solution, and were used for X-ray crystallographic studies.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were included at 1.5Ueq(O) or 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity.

Crystal data

C13H13N3O4S F(000) = 640
Mr = 307.32 Dx = 1.527 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1947 reflections
a = 10.495 (4) Å θ = 1.0–27.5°
b = 8.415 (2) Å µ = 0.26 mm1
c = 15.136 (6) Å T = 173 K
β = 91.034 (19)° Block, colorless
V = 1336.5 (8) Å3 0.14 × 0.12 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3048 independent reflections
Radiation source: fine-focus sealed tube 2196 reflections with I > σ(I)
Graphite monochromator Rint = 0.033
ω and φ scans θmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −13→13
Tmin = 0.964, Tmax = 0.974 k = −10→10
5770 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: difference Fourier map
wR(F2) = 0.110 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.650P] where P = (Fo2 + 2Fc2)/3
3048 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20345 (5) 0.30572 (6) 0.10421 (3) 0.03013 (16)
O1 0.07080 (15) 0.28041 (19) 0.08552 (10) 0.0419 (4)
O2 0.29133 (16) 0.17922 (17) 0.08858 (10) 0.0392 (4)
O3 0.65265 (14) 0.19936 (17) 0.27745 (10) 0.0328 (4)
O4 0.82589 (14) 0.30151 (18) 0.34514 (10) 0.0344 (4)
H4O 0.8579 0.2128 0.3330 0.052*
N1 0.21936 (16) 0.35819 (19) 0.20921 (10) 0.0258 (4)
N2 0.52959 (16) 0.54568 (18) 0.19902 (10) 0.0246 (4)
N3 0.52853 (15) 0.48638 (19) 0.28304 (10) 0.0234 (4)
C1 0.25731 (19) 0.4733 (2) 0.04545 (12) 0.0261 (4)
C2 0.1949 (2) 0.5191 (2) −0.03202 (13) 0.0306 (5)
H2 0.1192 0.4665 −0.0512 0.037*
C3 0.2448 (2) 0.6428 (3) −0.08089 (13) 0.0344 (5)
H3 0.2035 0.6747 −0.1344 0.041*
C4 0.3543 (2) 0.7200 (3) −0.05234 (13) 0.0332 (5)
H4 0.3889 0.8027 −0.0873 0.040*
C5 0.4142 (2) 0.6782 (2) 0.02673 (13) 0.0284 (5)
H5 0.4883 0.7338 0.0464 0.034*
C6 0.36539 (19) 0.5540 (2) 0.07754 (12) 0.0250 (4)
C7 0.41474 (19) 0.5083 (2) 0.16483 (12) 0.0238 (4)
C8 0.34399 (18) 0.4208 (2) 0.22614 (12) 0.0225 (4)
C9 0.1114 (2) 0.4429 (3) 0.25009 (15) 0.0353 (5)
H9A 0.1249 0.4473 0.3143 0.042*
H9B 0.0318 0.3862 0.2366 0.042*
H9C 0.1061 0.5512 0.2264 0.042*
C10 0.41904 (18) 0.4087 (2) 0.30145 (12) 0.0228 (4)
C11 0.3945 (2) 0.3369 (2) 0.38914 (13) 0.0302 (5)
H11A 0.3108 0.2851 0.3879 0.036*
H11B 0.3958 0.4202 0.4344 0.036*
H11C 0.4605 0.2580 0.4030 0.036*
C12 0.64872 (19) 0.4694 (2) 0.33106 (13) 0.0262 (4)
H12A 0.6344 0.4829 0.3951 0.031*
H12B 0.7084 0.5533 0.3121 0.031*
C13 0.70744 (18) 0.3072 (2) 0.31454 (12) 0.0226 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0322 (3) 0.0236 (3) 0.0343 (3) −0.0031 (2) −0.0082 (2) 0.0006 (2)
O1 0.0357 (9) 0.0422 (9) 0.0471 (9) −0.0137 (7) −0.0147 (7) 0.0061 (7)
O2 0.0499 (11) 0.0234 (8) 0.0441 (9) 0.0048 (7) −0.0049 (7) −0.0029 (6)
O3 0.0285 (8) 0.0275 (7) 0.0423 (8) 0.0018 (6) −0.0052 (7) −0.0026 (7)
O4 0.0251 (8) 0.0325 (8) 0.0454 (9) 0.0070 (6) −0.0072 (7) −0.0052 (7)
N1 0.0196 (9) 0.0262 (8) 0.0315 (9) −0.0028 (7) −0.0037 (7) 0.0022 (7)
N2 0.0240 (9) 0.0232 (8) 0.0268 (8) 0.0009 (7) 0.0010 (7) 0.0018 (7)
N3 0.0199 (9) 0.0239 (8) 0.0264 (8) 0.0003 (7) −0.0019 (6) 0.0023 (7)
C1 0.0269 (12) 0.0238 (10) 0.0275 (10) 0.0046 (8) 0.0004 (8) −0.0016 (8)
C2 0.0326 (13) 0.0298 (11) 0.0292 (10) 0.0041 (9) −0.0047 (9) −0.0052 (9)
C3 0.0406 (14) 0.0390 (12) 0.0234 (9) 0.0077 (10) −0.0018 (9) 0.0026 (9)
C4 0.0337 (13) 0.0371 (12) 0.0291 (10) 0.0030 (10) 0.0057 (9) 0.0067 (9)
C5 0.0238 (11) 0.0310 (11) 0.0304 (10) 0.0012 (9) 0.0030 (8) 0.0019 (9)
C6 0.0226 (11) 0.0247 (10) 0.0277 (9) 0.0055 (8) 0.0010 (8) −0.0005 (8)
C7 0.0215 (11) 0.0203 (9) 0.0296 (10) 0.0013 (8) −0.0011 (8) −0.0005 (8)
C8 0.0203 (10) 0.0195 (9) 0.0277 (9) 0.0005 (8) 0.0004 (8) 0.0009 (8)
C9 0.0210 (11) 0.0393 (12) 0.0456 (12) −0.0035 (9) 0.0026 (9) −0.0003 (10)
C10 0.0204 (10) 0.0198 (9) 0.0284 (9) 0.0013 (8) 0.0006 (8) 0.0006 (8)
C11 0.0279 (12) 0.0313 (11) 0.0313 (10) −0.0019 (9) −0.0008 (9) 0.0052 (9)
C12 0.0224 (11) 0.0262 (10) 0.0297 (10) −0.0013 (8) −0.0042 (8) −0.0009 (8)
C13 0.0181 (10) 0.0266 (10) 0.0231 (9) 0.0000 (8) 0.0001 (7) 0.0033 (8)

Geometric parameters (Å, º)

S1—O2 1.4309 (16) C3—H3 0.9500
S1—O1 1.4315 (17) C4—C5 1.387 (3)
S1—N1 1.6550 (18) C4—H4 0.9500
S1—C1 1.765 (2) C5—C6 1.401 (3)
O3—C13 1.207 (2) C5—H5 0.9500
O4—C13 1.320 (2) C6—C7 1.462 (3)
O4—H4O 0.8400 C7—C8 1.407 (3)
N1—C8 1.429 (2) C8—C10 1.378 (3)
N1—C9 1.483 (3) C9—H9A 0.9800
N2—C7 1.341 (2) C9—H9B 0.9800
N2—N3 1.366 (2) C9—H9C 0.9800
N3—C10 1.355 (2) C10—C11 1.485 (3)
N3—C12 1.452 (2) C11—H11A 0.9800
C1—C2 1.388 (3) C11—H11B 0.9800
C1—C6 1.401 (3) C11—H11C 0.9800
C2—C3 1.385 (3) C12—C13 1.520 (3)
C2—H2 0.9500 C12—H12A 0.9900
C3—C4 1.383 (3) C12—H12B 0.9900
O2—S1—O1 118.95 (10) C1—C6—C7 117.20 (18)
O2—S1—N1 107.64 (9) N2—C7—C8 110.47 (17)
O1—S1—N1 108.08 (10) N2—C7—C6 126.05 (17)
O2—S1—C1 107.32 (10) C8—C7—C6 123.45 (18)
O1—S1—C1 109.78 (9) C10—C8—C7 106.48 (17)
N1—S1—C1 104.07 (9) C10—C8—N1 128.98 (17)
C13—O4—H4O 109.5 C7—C8—N1 124.53 (17)
C8—N1—C9 116.85 (16) N1—C9—H9A 109.5
C8—N1—S1 110.29 (13) N1—C9—H9B 109.5
C9—N1—S1 117.66 (13) H9A—C9—H9B 109.5
C7—N2—N3 104.55 (15) N1—C9—H9C 109.5
C10—N3—N2 112.87 (15) H9A—C9—H9C 109.5
C10—N3—C12 125.58 (16) H9B—C9—H9C 109.5
N2—N3—C12 118.72 (15) N3—C10—C8 105.57 (16)
C2—C1—C6 121.69 (19) N3—C10—C11 122.79 (17)
C2—C1—S1 119.80 (16) C8—C10—C11 131.57 (18)
C6—C1—S1 118.48 (15) C10—C11—H11A 109.5
C3—C2—C1 118.9 (2) C10—C11—H11B 109.5
C3—C2—H2 120.6 H11A—C11—H11B 109.5
C1—C2—H2 120.6 C10—C11—H11C 109.5
C4—C3—C2 120.44 (19) H11A—C11—H11C 109.5
C4—C3—H3 119.8 H11B—C11—H11C 109.5
C2—C3—H3 119.8 N3—C12—C13 110.94 (15)
C3—C4—C5 120.8 (2) N3—C12—H12A 109.5
C3—C4—H4 119.6 C13—C12—H12A 109.5
C5—C4—H4 119.6 N3—C12—H12B 109.5
C4—C5—C6 119.9 (2) C13—C12—H12B 109.5
C4—C5—H5 120.1 H12A—C12—H12B 108.0
C6—C5—H5 120.1 O3—C13—O4 125.03 (18)
C5—C6—C1 118.26 (18) O3—C13—C12 124.07 (17)
C5—C6—C7 124.43 (18) O4—C13—C12 110.90 (16)
O2—S1—N1—C8 64.00 (15) N3—N2—C7—C6 176.09 (18)
O1—S1—N1—C8 −166.34 (12) C5—C6—C7—N2 −18.7 (3)
C1—S1—N1—C8 −49.68 (15) C1—C6—C7—N2 165.16 (18)
O2—S1—N1—C9 −158.49 (15) C5—C6—C7—C8 159.33 (19)
O1—S1—N1—C9 −28.84 (17) C1—C6—C7—C8 −16.8 (3)
C1—S1—N1—C9 87.83 (16) N2—C7—C8—C10 1.5 (2)
C7—N2—N3—C10 2.1 (2) C6—C7—C8—C10 −176.80 (17)
C7—N2—N3—C12 164.15 (16) N2—C7—C8—N1 −177.84 (17)
O2—S1—C1—C2 105.04 (18) C6—C7—C8—N1 3.8 (3)
O1—S1—C1—C2 −25.6 (2) C9—N1—C8—C10 76.3 (3)
N1—S1—C1—C2 −141.05 (16) S1—N1—C8—C10 −145.81 (18)
O2—S1—C1—C6 −73.08 (18) C9—N1—C8—C7 −104.5 (2)
O1—S1—C1—C6 156.31 (16) S1—N1—C8—C7 33.4 (2)
N1—S1—C1—C6 40.84 (18) N2—N3—C10—C8 −1.2 (2)
C6—C1—C2—C3 3.3 (3) C12—N3—C10—C8 −161.78 (17)
S1—C1—C2—C3 −174.78 (15) N2—N3—C10—C11 −178.68 (17)
C1—C2—C3—C4 −0.6 (3) C12—N3—C10—C11 20.8 (3)
C2—C3—C4—C5 −1.8 (3) C7—C8—C10—N3 −0.2 (2)
C3—C4—C5—C6 1.5 (3) N1—C8—C10—N3 179.14 (18)
C4—C5—C6—C1 1.1 (3) C7—C8—C10—C11 177.0 (2)
C4—C5—C6—C7 −175.00 (19) N1—C8—C10—C11 −3.7 (4)
C2—C1—C6—C5 −3.5 (3) C10—N3—C12—C13 70.0 (2)
S1—C1—C6—C5 174.58 (15) N2—N3—C12—C13 −89.5 (2)
C2—C1—C6—C7 172.87 (18) N3—C12—C13—O3 −10.2 (3)
S1—C1—C6—C7 −9.0 (2) N3—C12—C13—O4 168.99 (16)
N3—N2—C7—C8 −2.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4O···N2i 0.84 1.90 2.724 (2) 165
C9—H9A···O2ii 0.98 2.59 3.297 (3) 129
C5—H5···O4iii 0.95 2.59 3.476 (3) 155
C12—H12B···O3iii 0.99 2.35 3.303 (3) 160
C9—H9B···O1 0.98 2.49 2.867 (3) 102

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2415).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496. [DOI] [PubMed]
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [DOI] [PubMed]
  10. Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280. [DOI] [PMC free article] [PubMed]
  11. Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255. [DOI] [PubMed]
  12. Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13–16. [DOI] [PubMed]
  13. Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023677/pk2415sup1.cif

e-68-o1970-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023677/pk2415Isup2.hkl

e-68-o1970-Isup2.hkl (146.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023677/pk2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES