Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 31;68(Pt 6):o1972. doi: 10.1107/S1600536812024336

(E)-3-(4-Cyclo­hexyl-3-fluoro­benzyl­idene)chroman-4-one

Kaalin Gopaul a, Mahidansha M Shaikh a, Neil A Koorbanally a,*, Deresh Ramjugernath b, Bernard Omondi a
PMCID: PMC3379519  PMID: 22719717

Abstract

The title compound, C22H21FO2, exhibits substitutional disorder of the F atom and a H atom in the asymmetric unit with different occupancies, the refined F:H ratio being 0.80 (2):0.20 (2). The dihedral angle between the fluorinated benzene ring and the benzene ring of the chromanone system is 37.30°. There are two relatively high residual electron-density peaks associated with the disorder.

Related literature  

For the preparation, see: Shaikh et al. (2011). For related structures, see: Gopaul et al. (2012); Marx et al. (2008); Suresh et al. (2007). For the biological activity of this class of compound, see: du Toit et al. (2010). This compound may undergo chemical conversion into the (E)- and (Z)-isomers, see: Kirkiacharian et al. (1984).graphic file with name e-68-o1972-scheme1.jpg

Experimental  

Crystal data  

  • C22H21FO2

  • M r = 336.39

  • Triclinic, Inline graphic

  • a = 6.8351 (1) Å

  • b = 8.1483 (2) Å

  • c = 15.7931 (3) Å

  • α = 76.661 (1)°

  • β = 81.769 (1)°

  • γ = 75.287 (1)°

  • V = 824.45 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 446 K

  • 0.34 × 0.33 × 0.19 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.969, T max = 0.983

  • 18883 measured reflections

  • 4104 independent reflections

  • 3637 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.173

  • S = 1.05

  • 4104 reflections

  • 233 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.05 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024336/fj2556sup1.cif

e-68-o1972-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024336/fj2556Isup2.hkl

e-68-o1972-Isup2.hkl (197KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of KwaZulu-Natal, the National Research Foundation (NRF) and the South African Research Chairs initiative of the Department of Science and Technology for financial support and Dr B. Owaga for the data collection.

supplementary crystallographic information

Comment

The title compound, 3-(4-cyclohexyl-3-fluorobenzylidene)chroman-4-one, belongs to the homoisoflavonoid class of compounds, which are α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atoms (Kirkiacharian et al., 1984). This compound may undergo chemical conversion into the (E)- and (Z)-isomers (Kirkiacharian et al., 1984). The 3-benzylidene-4-chromanones have been shown to display a wide range of biological activities (du Toit et al., 2010). The most commonly used procedure for the synthesis of homoisoflavonoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of an acidic or basic catalyst (Shaikh et al., 2011). We have recently been involved in the synthesis and characterization of fluorinated homoisoflavonoids in the search for lead pharmaceuticals (Gopaul et al., 2012).

In the molecular structure, the dihedral angle between the fluorinated benzene moiety and the benzene ring of the chromanone moiety is 37.30°. The cyclohexane moiety on the fluorinated benzene ring is attached to the least sterically hindered para-position of the phenyl ring and adopts a chair confirmation.

Experimental

A mixture of chroman-4-one (1.00 g, 6.749 mmol), 3,4-difluorobenzaldehyde (1.15 g, 8.099 mmol) and 10–15 drops of piperidine in cyclohexane was heated at 80°C for 24 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3 × 30 ml). The ethyl acetate layers were combined, washed with brine (20 ml), water (2 × 10 ml) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by column chromatography using silica gel (Merck 9385, 40–63 µm particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound.

1H NMR: δ (p.p.m.): 1.65 (7H, m, H-5''- H-11''), 3.12 (4H, m, H-1''- H-4''), 5.36 (2H, d, J=1.68 Hz, H-2), 7.06–6.92 (5H, m, H-2', H-5', H-6', H-6, H-8), 7.46 (1H, ddd, J=8.48, 6.96, 1.52 Hz, H-7), 7.74 (1H, s, H-9), 8.00 (1H, dd, J=7.84, 1.44 Hz, H-5). 13C NMR: δ (p.p.m.): 181.9, 160.9, 154.7 (J=246.6 Hz), 142.3 (J=8.24 Hz), 136.4 (J=1.94 Hz), 135.70, 129.2, 127.9, 127.3 (J=2.71 Hz), 122.1, 121.9, 118.7 (J=3.94 Hz), 117.83, 117.79 (J=22.02 Hz), 67.7, 51.5 (J=4.19 Hz), 25.9, 24.2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The atoms F1a/F1b and H-8/H-13 are disordered and only F1a and H-8 are shown.

Crystal data

C22H21FO2 Z = 2
Mr = 336.39 F(000) = 356
Triclinic, P1 Dx = 1.355 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8351 (1) Å Cell parameters from 18935 reflections
b = 8.1483 (2) Å θ = 2.6–28.5°
c = 15.7931 (3) Å µ = 0.09 mm1
α = 76.661 (1)° T = 446 K
β = 81.769 (1)° Block, yellow
γ = 75.287 (1)° 0.34 × 0.33 × 0.19 mm
V = 824.45 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3637 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 28.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.969, Tmax = 0.983 k = −8→10
18883 measured reflections l = −21→21
4104 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0944P)2 + 0.7446P] where P = (Fo2 + 2Fc2)/3
4104 reflections (Δ/σ)max < 0.001
233 parameters Δρmax = 0.96 e Å3
21 restraints Δρmin = −1.05 e Å3

Special details

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.97 Å for Methylene H atoms, 0.98 Å for methine and 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Disorder: Disorder was found for the F– and H-atoms, which is not an uncommon situation. The disorder was modelled for F– and H– atoms (80:30) using PART instructions and the total occupancy at each atom site was kept as 1 during the refinement by means of a SUMFIX constraint. The F-atoms involved in disorder were modelled with anisotropic thermal parameters.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2972 (3) 0.3337 (3) 0.18026 (11) 0.0240 (4)
H1A 0.4375 0.2691 0.1775 0.029*
H1B 0.297 0.4558 0.1702 0.029*
C2 0.1930 (3) 0.3034 (3) 0.10912 (11) 0.0256 (4)
H2A 0.215 0.1798 0.1126 0.031*
H2B 0.2531 0.3532 0.0527 0.031*
C3 −0.0336 (3) 0.3826 (3) 0.11618 (12) 0.0269 (4)
H3A −0.0566 0.5079 0.1001 0.032*
H3B −0.0978 0.3443 0.0757 0.032*
C4 −0.1284 (3) 0.3313 (3) 0.20779 (12) 0.0276 (4)
H4A −0.129 0.2093 0.2193 0.033*
H4B −0.2683 0.3964 0.2122 0.033*
C5 −0.0171 (2) 0.3636 (3) 0.27620 (11) 0.0252 (4)
H5A −0.0337 0.4874 0.2704 0.03*
H5B −0.0759 0.3186 0.3338 0.03*
C6 0.1987 (2) 0.28131 (19) 0.26771 (9) 0.0131 (3)
H6 0.1978 0.1604 0.2696 0.016*
C7 0.3101 (2) 0.2672 (2) 0.33810 (10) 0.0158 (3)
C8 0.2403 (2) 0.3561 (2) 0.40676 (10) 0.0181 (3)
H8 0.1123 0.4306 0.4063 0.022* 0.803 (4)
F1B 0.0633 (2) 0.4701 (2) 0.41034 (10) 0.0309 (17) 0.197 (4)
C10 0.3560 (2) 0.3365 (2) 0.47542 (10) 0.0178 (3)
H10 0.3038 0.3982 0.5195 0.021*
C11 0.5499 (2) 0.22563 (19) 0.47953 (10) 0.0160 (3)
C12 0.6215 (2) 0.13448 (19) 0.41124 (10) 0.0164 (3)
H12 0.7496 0.0599 0.4114 0.02*
C13 0.5036 (2) 0.15504 (19) 0.34448 (10) 0.0161 (3)
H13 0.5545 0.0913 0.3011 0.019* 0.197 (4)
F1A 0.57542 (18) 0.05863 (15) 0.28206 (8) 0.0190 (4) 0.803 (4)
C14 0.6861 (2) 0.1993 (2) 0.54697 (10) 0.0170 (3)
H14 0.8215 0.1522 0.5311 0.02*
C15 0.6495 (2) 0.23152 (19) 0.62847 (10) 0.0159 (3)
C16 0.4451 (2) 0.3066 (2) 0.67092 (10) 0.0183 (3)
H16A 0.4237 0.4318 0.6582 0.022*
H16B 0.3413 0.2779 0.6448 0.022*
C17 0.5798 (2) 0.2205 (2) 0.81068 (10) 0.0180 (3)
C18 0.5371 (3) 0.2086 (2) 0.90100 (11) 0.0231 (3)
H18 0.404 0.2192 0.9261 0.028*
C19 0.6940 (3) 0.1809 (2) 0.95265 (11) 0.0239 (4)
H19 0.6657 0.1728 1.0127 0.029*
C20 0.8948 (3) 0.1650 (2) 0.91576 (11) 0.0223 (3)
H20 0.9991 0.1495 0.9508 0.027*
C21 0.9374 (2) 0.1725 (2) 0.82692 (11) 0.0196 (3)
H21 1.0712 0.159 0.8025 0.023*
C22 0.7803 (2) 0.20013 (19) 0.77313 (10) 0.0165 (3)
C23 0.8274 (2) 0.1979 (2) 0.67917 (10) 0.0180 (3)
O1 0.41878 (17) 0.24763 (18) 0.76439 (8) 0.0230 (3)
O2 1.00278 (19) 0.1688 (2) 0.64622 (9) 0.0303 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0204 (8) 0.0353 (9) 0.0172 (7) −0.0094 (7) 0.0026 (6) −0.0064 (6)
C2 0.0245 (8) 0.0333 (9) 0.0185 (8) −0.0042 (7) −0.0007 (6) −0.0081 (7)
C3 0.0239 (8) 0.0373 (10) 0.0222 (8) −0.0083 (7) −0.0058 (6) −0.0078 (7)
C4 0.0189 (8) 0.0393 (10) 0.0255 (9) −0.0077 (7) −0.0028 (6) −0.0070 (7)
C5 0.0147 (7) 0.0397 (10) 0.0221 (8) −0.0066 (6) 0.0001 (6) −0.0085 (7)
C6 0.0111 (6) 0.0177 (7) 0.0106 (6) −0.0035 (5) −0.0004 (5) −0.0031 (5)
C7 0.0165 (7) 0.0173 (7) 0.0144 (6) −0.0067 (5) −0.0008 (5) −0.0020 (5)
C8 0.0161 (7) 0.0170 (7) 0.0197 (7) −0.0019 (5) 0.0003 (5) −0.0042 (6)
F1B 0.023 (3) 0.034 (3) 0.032 (3) 0.009 (2) −0.007 (2) −0.014 (2)
C10 0.0189 (7) 0.0172 (7) 0.0166 (7) −0.0026 (6) 0.0006 (5) −0.0053 (5)
C11 0.0168 (7) 0.0154 (7) 0.0160 (7) −0.0054 (5) 0.0006 (5) −0.0029 (5)
C12 0.0154 (7) 0.0151 (7) 0.0181 (7) −0.0034 (5) 0.0007 (5) −0.0034 (5)
C13 0.0188 (7) 0.0143 (7) 0.0158 (7) −0.0049 (5) 0.0017 (5) −0.0047 (5)
F1A 0.0210 (6) 0.0186 (6) 0.0182 (6) −0.0015 (4) −0.0006 (4) −0.0093 (4)
C14 0.0151 (7) 0.0161 (7) 0.0194 (7) −0.0024 (5) −0.0004 (5) −0.0051 (5)
C15 0.0133 (6) 0.0159 (7) 0.0184 (7) −0.0031 (5) −0.0001 (5) −0.0045 (5)
C16 0.0137 (7) 0.0242 (8) 0.0158 (7) −0.0025 (6) 0.0006 (5) −0.0047 (6)
C17 0.0168 (7) 0.0190 (7) 0.0189 (7) −0.0044 (5) −0.0020 (6) −0.0046 (6)
C18 0.0197 (7) 0.0292 (9) 0.0197 (8) −0.0053 (6) 0.0010 (6) −0.0057 (6)
C19 0.0283 (9) 0.0262 (8) 0.0180 (7) −0.0070 (7) −0.0029 (6) −0.0046 (6)
C20 0.0240 (8) 0.0218 (8) 0.0232 (8) −0.0064 (6) −0.0082 (6) −0.0037 (6)
C21 0.0172 (7) 0.0192 (7) 0.0234 (8) −0.0046 (6) −0.0035 (6) −0.0050 (6)
C22 0.0155 (7) 0.0153 (7) 0.0190 (7) −0.0029 (5) −0.0020 (5) −0.0043 (5)
C23 0.0142 (7) 0.0199 (7) 0.0205 (7) −0.0025 (5) −0.0007 (5) −0.0076 (6)
O1 0.0133 (5) 0.0381 (7) 0.0171 (6) −0.0064 (5) 0.0002 (4) −0.0048 (5)
O2 0.0140 (6) 0.0507 (9) 0.0273 (7) −0.0028 (5) 0.0010 (5) −0.0172 (6)

Geometric parameters (Å, º)

C1—C6 1.467 (2) C11—C14 1.457 (2)
C1—C2 1.509 (2) C12—C13 1.372 (2)
C1—H1A 0.97 C12—H12 0.93
C1—H1B 0.97 C13—F1A 1.3611 (18)
C2—C3 1.518 (2) C13—H13 0.93
C2—H2A 0.97 C14—C15 1.349 (2)
C2—H2B 0.97 C14—H14 0.93
C3—C4 1.509 (3) C15—C23 1.484 (2)
C3—H3A 0.97 C15—C16 1.504 (2)
C3—H3B 0.97 C16—O1 1.4433 (19)
C4—C5 1.511 (2) C16—H16A 0.97
C4—H4A 0.97 C16—H16B 0.97
C4—H4B 0.97 C17—O1 1.3517 (19)
C5—C6 1.458 (2) C17—C22 1.398 (2)
C5—H5A 0.97 C17—C18 1.400 (2)
C5—H5B 0.97 C18—C19 1.382 (2)
C6—C7 1.403 (2) C18—H18 0.93
C6—H6 0.98 C19—C20 1.399 (3)
C7—C8 1.402 (2) C19—H19 0.93
C7—C13 1.406 (2) C20—C21 1.382 (2)
C8—F1B 1.3282 C20—H20 0.93
C8—C10 1.389 (2) C21—C22 1.405 (2)
C8—H8 0.93 C21—H21 0.93
C10—C11 1.402 (2) C22—C23 1.476 (2)
C10—H10 0.93 C23—O2 1.224 (2)
C11—C12 1.410 (2)
C6—C1—C2 112.53 (14) C11—C10—H10 119.4
C6—C1—H1A 109.1 C10—C11—C12 117.11 (14)
C2—C1—H1A 109.1 C10—C11—C14 125.82 (14)
C6—C1—H1B 109.1 C12—C11—C14 117.04 (14)
C2—C1—H1B 109.1 C13—C12—C11 120.46 (14)
H1A—C1—H1B 107.8 C13—C12—H12 119.8
C1—C2—C3 112.13 (14) C11—C12—H12 119.8
C1—C2—H2A 109.2 F1A—C13—C12 118.33 (14)
C3—C2—H2A 109.2 F1A—C13—C7 118.06 (14)
C1—C2—H2B 109.2 C12—C13—C7 123.59 (14)
C3—C2—H2B 109.2 C12—C13—H13 118.2
H2A—C2—H2B 107.9 C7—C13—H13 118.2
C4—C3—C2 111.15 (15) C15—C14—C11 131.10 (14)
C4—C3—H3A 109.4 C15—C14—H14 114.5
C2—C3—H3A 109.4 C11—C14—H14 114.5
C4—C3—H3B 109.4 C14—C15—C23 117.23 (14)
C2—C3—H3B 109.4 C14—C15—C16 125.62 (14)
H3A—C3—H3B 108 C23—C15—C16 117.08 (13)
C3—C4—C5 112.63 (15) O1—C16—C15 114.82 (13)
C3—C4—H4A 109.1 O1—C16—H16A 108.6
C5—C4—H4A 109.1 C15—C16—H16A 108.6
C3—C4—H4B 109.1 O1—C16—H16B 108.6
C5—C4—H4B 109.1 C15—C16—H16B 108.6
H4A—C4—H4B 107.8 H16A—C16—H16B 107.5
C6—C5—C4 111.53 (15) O1—C17—C22 123.41 (14)
C6—C5—H5A 109.3 O1—C17—C18 116.25 (14)
C4—C5—H5A 109.3 C22—C17—C18 120.32 (15)
C6—C5—H5B 109.3 C19—C18—C17 119.57 (15)
C4—C5—H5B 109.3 C19—C18—H18 120.2
H5A—C5—H5B 108 C17—C18—H18 120.2
C7—C6—C5 117.07 (13) C18—C19—C20 120.78 (16)
C7—C6—C1 116.12 (13) C18—C19—H19 119.6
C5—C6—C1 112.93 (13) C20—C19—H19 119.6
C7—C6—H6 102.6 C21—C20—C19 119.60 (15)
C5—C6—H6 102.6 C21—C20—H20 120.2
C1—C6—H6 102.6 C19—C20—H20 120.2
C8—C7—C6 124.42 (14) C20—C21—C22 120.61 (15)
C8—C7—C13 115.31 (14) C20—C21—H21 119.7
C6—C7—C13 120.25 (14) C22—C21—H21 119.7
F1B—C8—C10 114.28 (9) C17—C22—C21 119.08 (14)
F1B—C8—C7 123.45 (9) C17—C22—C23 120.42 (14)
C10—C8—C7 122.22 (14) C21—C22—C23 120.41 (14)
C10—C8—H8 118.9 O2—C23—C22 121.42 (15)
C7—C8—H8 118.9 O2—C23—C15 122.84 (15)
C8—C10—C11 121.29 (14) C22—C23—C15 115.73 (13)
C8—C10—H10 119.4 C17—O1—C16 118.16 (12)
C6—C1—C2—C3 51.8 (2) C10—C11—C14—C15 19.5 (3)
C1—C2—C3—C4 −49.7 (2) C12—C11—C14—C15 −162.10 (17)
C2—C3—C4—C5 50.9 (2) C11—C14—C15—C23 −176.66 (15)
C3—C4—C5—C6 −53.7 (2) C11—C14—C15—C16 0.3 (3)
C4—C5—C6—C7 −165.85 (15) C14—C15—C16—O1 148.36 (16)
C4—C5—C6—C1 55.3 (2) C23—C15—C16—O1 −34.7 (2)
C2—C1—C6—C7 165.83 (15) O1—C17—C18—C19 179.99 (15)
C2—C1—C6—C5 −54.9 (2) C22—C17—C18—C19 1.7 (3)
C5—C6—C7—C8 −13.6 (2) C17—C18—C19—C20 0.1 (3)
C1—C6—C7—C8 123.94 (17) C18—C19—C20—C21 −1.7 (3)
C5—C6—C7—C13 164.76 (15) C19—C20—C21—C22 1.6 (2)
C1—C6—C7—C13 −57.7 (2) O1—C17—C22—C21 −179.98 (14)
C6—C7—C8—F1B −3.22 (19) C18—C17—C22—C21 −1.8 (2)
C13—C7—C8—F1B 178.34 (9) O1—C17—C22—C23 −3.4 (2)
C6—C7—C8—C10 179.45 (15) C18—C17—C22—C23 174.79 (15)
C13—C7—C8—C10 1.0 (2) C20—C21—C22—C17 0.2 (2)
F1B—C8—C10—C11 −177.69 (11) C20—C21—C22—C23 −176.43 (15)
C7—C8—C10—C11 −0.1 (2) C17—C22—C23—O2 −175.13 (16)
C8—C10—C11—C12 −0.3 (2) C21—C22—C23—O2 1.4 (2)
C8—C10—C11—C14 178.12 (14) C17—C22—C23—C15 4.4 (2)
C10—C11—C12—C13 −0.2 (2) C21—C22—C23—C15 −179.02 (14)
C14—C11—C12—C13 −178.77 (14) C14—C15—C23—O2 11.4 (2)
C11—C12—C13—F1A −177.15 (13) C16—C15—C23—O2 −165.74 (16)
C11—C12—C13—C7 1.2 (2) C14—C15—C23—C22 −168.11 (14)
C8—C7—C13—F1A 176.79 (13) C16—C15—C23—C22 14.7 (2)
C6—C7—C13—F1A −1.7 (2) C22—C17—O1—C16 −18.0 (2)
C8—C7—C13—C12 −1.6 (2) C18—C17—O1—C16 163.70 (15)
C6—C7—C13—C12 179.93 (14) C15—C16—O1—C17 36.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2556).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Gopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006. [DOI] [PMC free article] [PubMed]
  5. Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108.
  6. Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Sridhar, B. (2008). Acta Cryst. E64, o328. [DOI] [PMC free article] [PubMed]
  7. Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). Struct. Chem. 22, 161–166.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.
  10. Toit, K. du, Drewes, S. E. & Bodenstein, J. (2010). Nat. Prod. Res. 24, 457–490. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024336/fj2556sup1.cif

e-68-o1972-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024336/fj2556Isup2.hkl

e-68-o1972-Isup2.hkl (197KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES