Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1375. doi: 10.1107/S1600536812014328

tert-Butyl 6-amino-5-cyano-2-(2-meth­oxy­eth­yl)nicotinate

Yi-Ning Chen a, Xing-Dong Zhao b, Jie Deng c, Qin-Geng Li a,*
PMCID: PMC3381644  PMID: 22737103

Abstract

The title compound, C14H19N3O3, was synthesized by the reaction of 3-meth­oxy­propionitrile, tert-butyl bromo­acetate and eth­oxy­methyl­enemalononitrile. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the b axis.

Related literature  

For a related structure, see: Wang et al. (2007). For applications of pyridines, see: Spurr (1995). For background to the synthesis of highly substituted pyridines, see: Chun et al. (2009, 2011). graphic file with name e-68-o1375-scheme1.jpg

Experimental  

Crystal data  

  • C14H19N3O3

  • M r = 277.32

  • Monoclinic, Inline graphic

  • a = 10.1155 (4) Å

  • b = 15.2482 (5) Å

  • c = 19.4882 (6) Å

  • β = 99.853 (3)°

  • V = 2961.59 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.35 × 0.30 × 0.30 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.902, T max = 1.000

  • 5419 measured reflections

  • 2608 independent reflections

  • 2094 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 1.05

  • 2608 reflections

  • 191 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014328/cv5269sup1.cif

e-68-o1375-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014328/cv5269Isup2.hkl

e-68-o1375-Isup2.hkl (128.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014328/cv5269Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 (1) 2.25 (1) 3.0186 (18) 146 (2)
N2—H2B⋯O1i 0.88 (1) 2.00 (1) 2.8427 (18) 159 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Yin Ping, Fang Bo and Fochon Pharma, Inc.

supplementary crystallographic information

Comment

Pyridines can be found in many natural products and biologically active compounds (Spurr, 1995). Thus, the synthesis of highly substituted pyridines has attracted much attention (Chun et al. 2009, 2011). We synthesized the title compound (I). Herein we present its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related compound methyl 6-amino-5-cyano-4-(4-fluorophenyl)-2-methylpyridine-3-carboxylate (Wang et al., 2007).

In the crystal structure of (I), intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along the b axis.

Experimental

A mixture of zinc powder (0.65 g) and 3-methoxypropionitrile (0.85 g) in tetrahydrofuran (10 ml) was refluxed, then tert-Butyl bromoacetate (1.95 g) was added dropwise. Keep stirring under reflux for 1 h. Ethoxymethylenemalononitrile (1.22 g) was added, the reaction mixture was stirred under reflux for 2 h to afford the title compound (I) (Chun et al. 2009, 2011). Single crystals were grown by slow evaporation of a solution of Pet: EtOAc=5:1 at room temperature.

Refinement

C-bound H atoms were positioned geometrically (C—H 0.95–0.99 Å), and were refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq (C). N-bound H atoms were located in a difference map and refined freely with Uiso(H) = 1.2 Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H19N3O3 Dx = 1.244 Mg m3
Mr = 277.32 Melting point: 404.16 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.7107 Å
a = 10.1155 (4) Å Cell parameters from 2258 reflections
b = 15.2482 (5) Å θ = 2.9–29.1°
c = 19.4882 (6) Å µ = 0.09 mm1
β = 99.853 (3)° T = 130 K
V = 2961.59 (18) Å3 Block, colourless
Z = 8 0.35 × 0.30 × 0.30 mm
F(000) = 1184

Data collection

Agilent Xcalibur Eos diffractometer 2608 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2094 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 16.0874 pixels mm-1 θmax = 25.0°, θmin = 2.9°
ω scans h = −12→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −18→10
Tmin = 0.902, Tmax = 1.000 l = −15→23
5419 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.1844P] where P = (Fo2 + 2Fc2)/3
2608 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.16 e Å3
4 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21160 (13) 0.04640 (8) 0.29380 (6) 0.0402 (3)
O2 0.12016 (10) 0.02438 (7) 0.38946 (5) 0.0280 (3)
O3 0.33430 (10) −0.04292 (7) 0.12374 (6) 0.0296 (3)
N1 0.17189 (12) −0.23015 (8) 0.25819 (6) 0.0241 (3)
N2 0.16078 (15) −0.36625 (9) 0.30598 (8) 0.0322 (4)
H2A 0.1613 (17) −0.4024 (9) 0.3412 (8) 0.039*
H2B 0.1820 (17) −0.3884 (10) 0.2674 (7) 0.039*
N3 0.11844 (14) −0.34153 (10) 0.48130 (7) 0.0367 (4)
C1 0.15937 (14) −0.27913 (10) 0.31410 (8) 0.0237 (4)
C2 0.14474 (14) −0.24020 (10) 0.37841 (8) 0.0233 (4)
C3 0.14728 (14) −0.15014 (10) 0.38336 (8) 0.0230 (4)
H3 0.1386 −0.1227 0.4261 0.028*
C4 0.16250 (13) −0.09908 (10) 0.32599 (8) 0.0218 (3)
C5 0.17249 (13) −0.14259 (10) 0.26322 (8) 0.0219 (3)
C6 0.16804 (14) −0.00242 (11) 0.33331 (8) 0.0250 (4)
C7 0.13015 (15) −0.29497 (11) 0.43634 (8) 0.0263 (4)
C8 0.11812 (17) 0.11866 (10) 0.40839 (9) 0.0303 (4)
C9 0.0559 (2) 0.11529 (13) 0.47372 (11) 0.0529 (6)
H9A 0.0480 0.1749 0.4913 0.079*
H9B 0.1128 0.0802 0.5092 0.079*
H9C −0.0334 0.0886 0.4629 0.079*
C10 0.25917 (19) 0.15437 (14) 0.42359 (11) 0.0505 (5)
H10A 0.2974 0.1550 0.3806 0.076*
H10B 0.3143 0.1171 0.4583 0.076*
H10C 0.2575 0.2142 0.4417 0.076*
C11 0.03036 (19) 0.16861 (12) 0.35095 (10) 0.0459 (5)
H11A 0.0773 0.1751 0.3112 0.069*
H11B 0.0104 0.2268 0.3680 0.069*
H11C −0.0536 0.1364 0.3363 0.069*
C12 0.18509 (14) −0.09710 (11) 0.19592 (8) 0.0247 (4)
H12A 0.1426 −0.0385 0.1950 0.030*
H12B 0.1367 −0.1315 0.1563 0.030*
C13 0.33020 (14) −0.08676 (11) 0.18746 (8) 0.0252 (4)
H13A 0.3796 −0.0524 0.2268 0.030*
H13B 0.3732 −0.1451 0.1873 0.030*
C14 0.46425 (17) −0.04423 (13) 0.10532 (10) 0.0417 (5)
H14A 0.4621 −0.0133 0.0611 0.063*
H14B 0.4923 −0.1051 0.1004 0.063*
H14C 0.5280 −0.0152 0.1418 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0612 (8) 0.0263 (7) 0.0407 (7) −0.0069 (6) 0.0305 (6) −0.0014 (6)
O2 0.0394 (6) 0.0213 (6) 0.0262 (6) −0.0012 (5) 0.0138 (5) −0.0030 (5)
O3 0.0326 (6) 0.0331 (7) 0.0258 (6) −0.0025 (5) 0.0128 (4) 0.0028 (5)
N1 0.0260 (7) 0.0240 (7) 0.0236 (7) −0.0005 (6) 0.0082 (5) −0.0018 (6)
N2 0.0477 (9) 0.0228 (8) 0.0300 (8) 0.0015 (7) 0.0177 (7) −0.0008 (7)
N3 0.0444 (9) 0.0367 (9) 0.0296 (8) −0.0065 (7) 0.0077 (6) 0.0051 (7)
C1 0.0204 (8) 0.0241 (8) 0.0274 (8) 0.0001 (6) 0.0065 (6) −0.0001 (7)
C2 0.0225 (8) 0.0249 (8) 0.0235 (8) 0.0001 (6) 0.0066 (6) 0.0007 (7)
C3 0.0207 (8) 0.0274 (8) 0.0216 (8) 0.0005 (6) 0.0060 (6) −0.0013 (7)
C4 0.0185 (7) 0.0245 (8) 0.0231 (8) 0.0004 (6) 0.0059 (6) −0.0003 (7)
C5 0.0164 (7) 0.0253 (8) 0.0249 (8) −0.0001 (6) 0.0062 (6) 0.0010 (7)
C6 0.0241 (8) 0.0274 (9) 0.0248 (8) −0.0003 (7) 0.0078 (6) −0.0009 (7)
C7 0.0282 (9) 0.0258 (9) 0.0259 (9) −0.0014 (7) 0.0071 (7) −0.0029 (8)
C8 0.0399 (9) 0.0211 (8) 0.0324 (9) −0.0023 (7) 0.0132 (7) −0.0071 (8)
C9 0.0851 (15) 0.0328 (11) 0.0507 (13) −0.0069 (10) 0.0392 (11) −0.0133 (10)
C10 0.0487 (12) 0.0491 (12) 0.0533 (13) −0.0149 (10) 0.0076 (9) −0.0227 (11)
C11 0.0542 (12) 0.0304 (10) 0.0526 (12) 0.0095 (9) 0.0080 (9) −0.0036 (10)
C12 0.0259 (8) 0.0268 (9) 0.0219 (8) −0.0008 (7) 0.0052 (6) −0.0002 (7)
C13 0.0304 (9) 0.0246 (8) 0.0223 (8) 0.0020 (7) 0.0094 (6) 0.0022 (7)
C14 0.0431 (11) 0.0426 (11) 0.0470 (11) 0.0023 (9) 0.0290 (8) 0.0050 (10)

Geometric parameters (Å, º)

O1—C6 1.2072 (18) C8—C10 1.508 (2)
O2—C6 1.3342 (17) C8—C11 1.510 (2)
O2—C8 1.4852 (19) C9—H9A 0.9800
O3—C13 1.4170 (18) C9—H9B 0.9800
O3—C14 1.4209 (18) C9—H9C 0.9800
N1—C1 1.3447 (19) C10—H10A 0.9800
N1—C5 1.339 (2) C10—H10B 0.9800
N2—H2A 0.880 (12) C10—H10C 0.9800
N2—H2B 0.883 (12) C11—H11A 0.9800
N2—C1 1.338 (2) C11—H11B 0.9800
N3—C7 1.149 (2) C11—H11C 0.9800
C1—C2 1.417 (2) C12—H12A 0.9900
C2—C3 1.377 (2) C12—H12B 0.9900
C2—C7 1.432 (2) C12—C13 1.513 (2)
C3—H3 0.9500 C13—H13A 0.9900
C3—C4 1.392 (2) C13—H13B 0.9900
C4—C5 1.410 (2) C14—H14A 0.9800
C4—C6 1.481 (2) C14—H14B 0.9800
C5—C12 1.508 (2) C14—H14C 0.9800
C8—C9 1.515 (2)
C6—O2—C8 121.51 (12) H9A—C9—H9B 109.5
C13—O3—C14 112.44 (12) H9A—C9—H9C 109.5
C5—N1—C1 119.64 (13) H9B—C9—H9C 109.5
H2A—N2—H2B 117.1 (16) C8—C10—H10A 109.5
C1—N2—H2A 121.9 (11) C8—C10—H10B 109.5
C1—N2—H2B 119.3 (11) C8—C10—H10C 109.5
N1—C1—C2 121.50 (14) H10A—C10—H10B 109.5
N2—C1—N1 116.81 (14) H10A—C10—H10C 109.5
N2—C1—C2 121.69 (15) H10B—C10—H10C 109.5
C1—C2—C7 119.56 (14) C8—C11—H11A 109.5
C3—C2—C1 118.44 (14) C8—C11—H11B 109.5
C3—C2—C7 121.99 (14) C8—C11—H11C 109.5
C2—C3—H3 119.8 H11A—C11—H11B 109.5
C2—C3—C4 120.32 (14) H11A—C11—H11C 109.5
C4—C3—H3 119.8 H11B—C11—H11C 109.5
C3—C4—C5 117.88 (14) C5—C12—H12A 109.3
C3—C4—C6 119.12 (13) C5—C12—H12B 109.3
C5—C4—C6 123.00 (14) C5—C12—C13 111.75 (12)
N1—C5—C4 122.18 (14) H12A—C12—H12B 107.9
N1—C5—C12 113.27 (13) C13—C12—H12A 109.3
C4—C5—C12 124.55 (14) C13—C12—H12B 109.3
O1—C6—O2 123.89 (15) O3—C13—C12 108.60 (12)
O1—C6—C4 124.35 (14) O3—C13—H13A 110.0
O2—C6—C4 111.76 (13) O3—C13—H13B 110.0
N3—C7—C2 177.52 (17) C12—C13—H13A 110.0
O2—C8—C9 101.62 (13) C12—C13—H13B 110.0
O2—C8—C10 110.20 (14) H13A—C13—H13B 108.4
O2—C8—C11 109.60 (13) O3—C14—H14A 109.5
C10—C8—C9 111.25 (16) O3—C14—H14B 109.5
C10—C8—C11 112.31 (16) O3—C14—H14C 109.5
C11—C8—C9 111.34 (16) H14A—C14—H14B 109.5
C8—C9—H9A 109.5 H14A—C14—H14C 109.5
C8—C9—H9B 109.5 H14B—C14—H14C 109.5
C8—C9—H9C 109.5
N1—C1—C2—C3 −1.8 (2) C4—C5—C12—C13 93.76 (17)
N1—C1—C2—C7 179.27 (13) C5—N1—C1—N2 −179.37 (13)
N1—C5—C12—C13 −86.09 (16) C5—N1—C1—C2 0.9 (2)
N2—C1—C2—C3 178.53 (14) C5—C4—C6—O1 −18.0 (2)
N2—C1—C2—C7 −0.4 (2) C5—C4—C6—O2 162.63 (13)
C1—N1—C5—C4 1.0 (2) C5—C12—C13—O3 −179.41 (12)
C1—N1—C5—C12 −179.11 (12) C6—O2—C8—C9 179.74 (14)
C1—C2—C3—C4 0.7 (2) C6—O2—C8—C10 −62.23 (19)
C1—C2—C7—N3 −3 (4) C6—O2—C8—C11 61.86 (18)
C2—C3—C4—C5 1.2 (2) C6—C4—C5—N1 177.67 (13)
C2—C3—C4—C6 −178.59 (13) C6—C4—C5—C12 −2.2 (2)
C3—C2—C7—N3 178 (100) C7—C2—C3—C4 179.59 (13)
C3—C4—C5—N1 −2.1 (2) C8—O2—C6—O1 −0.6 (2)
C3—C4—C5—C12 178.08 (12) C8—O2—C6—C4 178.73 (12)
C3—C4—C6—O1 161.74 (15) C14—O3—C13—C12 −169.39 (13)
C3—C4—C6—O2 −17.62 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.88 (1) 2.25 (1) 3.0186 (18) 146 (2)
N2—H2B···O1i 0.88 (1) 2.00 (1) 2.8427 (18) 159 (2)

Symmetry code: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5269).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Chun, Y. S., Lee, J. H., Kim, J. H., Ko, Y. O. & Lee, S. G. (2011). Org. Lett. 13, 6390–6393. [DOI] [PubMed]
  3. Chun, Y. S., Ryu, K. Y., Ko, Y. O., Hong, J. Y., Hong, J., Shin, H. & Lee, S. G. (2009). J. Org. Chem. 74, 7556–7558. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spurr, P. R. (1995). Tetrahedron Lett. 36, 2745–2748.
  7. Wang, Q., Zhou, D., Li, C., Shao, Q. & Tu, S. (2007). Acta Cryst. E63, o4220.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014328/cv5269sup1.cif

e-68-o1375-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014328/cv5269Isup2.hkl

e-68-o1375-Isup2.hkl (128.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014328/cv5269Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES