Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2013 Jun 1.
Published in final edited form as: J Cardiovasc Transl Res. 2012 Apr 11;5(3):302–308. doi: 10.1007/s12265-012-9362-y

A Review of Genetics, Arterial Stiffness, and Blood Pressure in African Americans

Jennifer L Hall 1, Daniel A Duprez 1, Ana Barac 2, Stephen S Rich 3
PMCID: PMC3381797  NIHMSID: NIHMS376745  PMID: 22492025

Abstract

The prevalence of hypertension in African Americans in the United States is amongst the highest in the world and increasing. The identification of genes and pathways regulating blood pressure in African Americans has been challenging. An early predictor of hypertension is arterial stiffness. The prevalence of arterial stiffness is significantly higher in African Americans compared to Caucasians. Approximately 20% of the variance in arterial stiffness is estimated to be heritable. Identifying genes and biological pathways regulating arterial stiffness may provide insight into the genetics underlying the increased risk of hypertension in African Americans. This paper reviews the genetic findings to date in the area of arterial stiffness and blood pressure in African Americans with an emphasis on the current limitations and new efforts to move the field forward.

Keywords: African Americans, arterial stiffness, arterial elasticity, compliance, genetics, DNA, variants, SNP, elastin, collagen, health and medicine

INTRODUCTION

The prevalence of hypertension in African Americans in the United States is amongst the highest in the world and increasing (1). According to the 2005–2006 National Health and Nutrition Examination Survey (NHANES), 27% of African American adults are hypertensive compared to 17% of Caucasians (2). This racial disparity in poorly controlled blood pressure exists after adjusting for demographics, socioeconomic status, clinical characteristics and modifiable health behaviors (2). This difference in hypertension prevalence suggests that other factors, including genetic factors, may play a significant contributing role in blood pressure. Hypertension is the most common risk factor associated with cardiovascular disease and is associated with a three fold increase in age-adjusted death rate (3). Thus, developing effective therapies to decrease hypertension would significantly lower the prevalence of cardiovascular disease. Identifying genes and pathways that predispose African Americans to high blood pressure would represent a major first step in developing new effective therapies to treat hypertension.

Impaired arterial elasticity is an early predictor of hypertension in asymptomatic individuals (49). The prevalence of impaired arterial elasticity (as well as hypertension) is significantly higher in African Americans compared to Caucasians(1014). Approximately 20% of the variance in arterial elasticity is estimated to be heritable (15,16). Previous studies have identified common variants associated with arterial elasticity across different ethnicities (1556). Despite these investigations, relatively little of the phenotypic variance in arterial elasticity has been identified through common genetic variants using either candidate gene or genome-wide association scan (GWAS) approaches.

IMPAIRED ARTERIAL ELASTICITY IN AFRICAN AMERICANS

Evidence to date suggests that the prevalence of impaired arterial elasticity and hypertension is significantly higher in African American men compared to Caucasian men (11,12,14,5760) (Table 1). Duprez and colleagues recently demonstrated that small artery elasticity is an early predictor of hypertension (6). In addition, Duprez showed that small artery elasticity is impaired in African Americans compared to Caucasian- and Asian-American participants in the Multi-Ethnic Study of Atherosclerosis (MESA) (14). The MESA cohort consists of ~ 6800 men and women ages 45–84 years with no clinical evidence of cardiovascular disease. These findings are similar to previously published work in the Bogalusa Heart Study showing decreased pulse wave velocity and decreased small and large artery elasticity in African Americans compared to whites (61). Shah and colleagues showed that arterial stiffness (as measured by pulse wave velocity and Augmentation index) is significantly increased in adolescent African Americans with type 2 diabetes compared to adolescent whites with type 2 diabetes (59). A meta-analysis with five cohorts by Chirinos et al showed that the central augmentation index, defined as a ratio calculated from a blood pressure waveform, is increased in African Americans compared to British whites (57). Heffernan showed that racial differences in low arterial compliance in African Americans compared to whites are unchanged with exercise (58). A lower arterial compliance in African Americans had previously been shown by Zion et al in 2003, Ferreira et al, in 1999 and Din-Dzietham et al in 2004 (60).

Table 1.

Loci and Genes Associated with Pulse Pressure, Systolic and Diastolic Blood Pressure and Hypertension

Study Race-ethnicity/country Genotyping Platform Traits Discovery
FBPP1 AA (n=3962)/Whites
(n=3667)/Hispanics
(n=1612)/Asian(n=1557)
U.S.
Genome-wide linkage Pulse pressure chromosome 7 at 75 cM,
LOD 3.1 in AA, chromosome
19 at 0 cM LOD 3.1
in combined sample whites
and AA, and a region on
chromosome 18 at 71 cM
LOD score of 3.2 in whites,
AA, and Hispanics.
FBPP2 AA (n=3962)/Whites
(n=3667)/Hispanics
(n=1612)/Asian(n=2154):
U.S.
Genome-wide linkage,
race-specific meta-
analyses
Pulse pressure chromosome 6, 42.27 cM
LOD 3.76 Raw PP, LOD
3.23 Medication adjusted PP,
(META): chromosome 1
212.44 LOD 2.82 Raw PP,
LOD 3.16 Medication
adjusted PP, HyperGEN)
HyperGEN3 AA(n=1251) U.S. Genome Scan Pulse Pressure Chromosome 1, 215 cM,
LOD 3.08, Chromosome 14,
85 cM, LOD 2.42
Howard University
Family Study4
AA (n=1017) U.S.
2nd cohort of 980 West
Africans
GWAS
Affymetrix 6.0
Systolic BP rs5743185, rs16877320,
rs11160059, rs17365948,
rs12279202, rs3751664
FBPP5 AA (n=737) (cases)
European Americans
(n=573)(controls)
microsatellite markers
and a set of informative
SNPs: Admixture mapping
hypertension 5 markers on chromosome
6q (near region 6q24); 2
markers on chromosome 21
(near region 21q21) may
contain genes influencing
risk of hypertension in AA
Dallas Heart Study6 AA (n=1743), White
(n=1000), Mexican
American (n=581)
Admixture mapping
2,270 ancestral informative
markers
Hypertension rs2272996
CARe7 AA (n=8591), replication
Cohorts: Women’s
Health Initiative; Maywood,
GENOA, Howard University
Family Study, native Nigerian
African Sample (n=11,882)
GWAS Affymetrix 6.0
50K Cardiovascular
gene-centric array
Systolic and diastolic
blood pressure
none of the top SNPs
replicated
CARe8 AA (n=6303), replication
Cohorts: Women’s Health Initiative, Maywood,
GENOA, Howard University
Family Study, native Nigerian
African Sample (n=11,882)
admixture mapping
follow up association
Systolic and Diastolic
blood pressure
rs7726475 between genes
SUB1 and NPR3
International
Consortium for
Blood Pressure
Association Studies9
AA (n=19,775), Europeans
(n=200,000), East Asians
(n=29,719), South Asians
GWAS Meta-analysis Systolic and Diastolic
blood pressure,
Hypertension
rs13082711 (SLC4A7)
(SBP/DBP); rs419076
(MECOM), (SBP);
rs13107325 (SLC39A8)
(SBP/DBP); rs13139571
(GUCY1A3-GUCY1B3)
(SBP/DBP); rs1173771
(NPR3-C5orf23) (SBP);
rs11953630 (EBF1)
(SBP/DBP); rs805303
(BAT2-BAT5) (DBP);
rs7129220 (ADM)
(SBP/DBP); rs633185
(FLJ32810/TMEM133)
(SBP); rs2521501 (FURIN-
FES) (SBP/DBP);
rs17608766 (GOSR2)
(SBP/DBP); rs1327235
(JAG1) (SBP/DBP);
rs6015450 (GNAS-EDN3)
(SBP/DBP); rs17367504
(MTHFR-NPPB) (SBP/DBP);
rs3774372 (ULK4)
(SBP/DBP); rs1458038
(FGF5) (SBP/DBP);
rs1813353 (CACNB2(3’)
(SBP/DBP); rs11191548
(CYP17A1-NT5C2)
(SBP/DBP); rs381815
(PLEKHA7) (SBP/DBP);
rs3184504 (SH2B3)
(SBP/DBP); rs1378942
(CYP1A1-ULK3) (SBP):
rs12940887 (ZNF652)
(SBP/DBP)
1

Bielinski SJ, Lynch AI, Miller MB, Weder A, Cooper R, Oberman A, Chen YD, Turner ST, Fornage M, Province M, Arnett DK. Genome-wide linkage analysis for loci affecting pulse pressure: The family blood pressure program. Hypertension. 2005;46:1286–1293

2

Simino J, Shi G, Kume R, Schwander K, Province MA, Gu CC, Kardia S, Chakravarti A, Ehret G, Olshen RA, Turner ST, Ho LT, Zhu X, Jaquish C, Paltoo D, Cooper RS, Weder A, Curb JD, Boerwinkle E, Hunt SC, Rao DC. Five blood pressure loci identified by an updated genome-wide linkage scan: Meta-analysis of the family blood pressure program. Am J Hypertens. 2011;24:347–354

3

Sherva R, Miller MB, Lynch AI, Devereux RB, Rao DC, Oberman A, Hopkins PN, Kitzman DW, Atwood LD, Arnett DK. A whole genome scan for pulse pressure/stroke volume ratio in african americans: The hypergen study. Am J Hypertens. 2007;20:398–402

4

Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, Zhou J, Lashley K, Chen Y, Christman M, Rotimi C. A genome-wide association study of hypertension and blood pressure in african americans. PLoS Genet. 2009;5:e1000564

5

Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, Gu CC, Tang H, Rao DC, Risch N, Weder A. Admixture mapping for hypertension loci with genome-scan markers. Nat Genet. 2005;37:177–181

6

Zhu X, Cooper RS. Admixture mapping provides evidence of association of the vnn1 gene with hypertension. PLoS One. 2007;2:e1244

7

Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, Liu K, Morrison AC, Ganesh S, Kutlar A, Ramachandran VS, Polak JF, Fabsitz RR, Dries DL, Farlow DN, Redline S, Adeyemo A, Hirschorn JN, Sun YV, Wyatt SB, Penman AD, Palmas W, Rotter JI, Townsend RR, Doumatey AP, Tayo BO, Mosley TH, Jr., Lyon HN, Kang SJ, Rotimi CN, Cooper RS, Franceschini N, Curb JD, Martin LW, Eaton CB, Kardia SL, Taylor HA, Caulfield MJ, Ehret GB, Johnson T, Chakravarti A, Zhu X, Levy D, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Collins R, Hopewell JC, Ongen H, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Hoffman Bolton JA, Kottgen A,Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH,Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, Snieder H, Wang X,Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O'Donnell C, Schwartz SM, Ikram MA, Longstreth WT, Jr., Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli C, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MJ, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Bots ML, Brand E, Samani N, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Wong TY, Tai ES, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Boehnke M, Larson MG, Jarvelin MR, Psaty BM, Abecasis GR, Elliott P, van Duijn CM, Newton-Cheh C. Association of genetic variation with systolic and diastolic blood pressure among african americans: The candidate gene association resource study. Hum Mol Genet. 2011;20:2273–2284

8

Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, Tayo B, Adeyemo A, Sun YV, Li Y, Morrison A, Newton-Cheh C, Liu K, Ganesh SK, Kutlar A, Vasan RS, Dreisbach A, Wyatt S, Polak J, Palmas W, Musani S, Taylor H, Fabsitz R, Townsend RR, Dries D, Glessner J, Chiang CW, Mosley T, Kardia S, Curb D, Hirschhorn JN, Rotimi C, Reiner A, Eaton C, Rotter JI, Cooper RS, Redline S, Chakravarti A, Levy D. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: Contributions from the care consortium. Hum Mol Genet. 2011;20:2285–2295

9

Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R,Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Artigas MS, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Jr., Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ,Lyytikainen LP, Soininen P, Tukiainen T, Wurtz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Jarvelin MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T, Tang H, Knowles J, Hlatky M, Fortmann S, Assimes TL, Quertermous T, Go A, Iribarren C, Absher D, Risch N, Myers R, Sidney S, Ziegler A, Schillert A, Bickel C, Sinning C, Rupprecht HJ, Lackner K, Wild P, Schnabel R, Blankenberg S, Zeller T, Munzel T, Perret C, Cambien F, Tiret L, Nicaud V, Proust C, Uitterlinden A, van Duijn C, Whitteman J, Cupples LA, Demissie-Banjaw S, Ramachandran V, Smith A, Folsom A, Morrison A, Chen IY, Bis J, Volcik K, Rice K, Taylor KD, Marciante K, Smith N, Glazer N, Heckbert S, Harris T, Lumley T, Kong A, Thorleifsson G, Thorgeirsson G, Holm H, Gulcher JR, Stefansson K, Andersen K, Gretarsdottir S, Thorsteinsdottir U, Preuss M, Schreiber S, Konig IR, Lieb W, Hengstenberg C, Schunkert H, Fischer M, Grosshennig A, Medack A, Stark K, Linsel-Nitschke P, Bruse P, Aherrahrou Z, Peters A, Loley C, Willenborg C, Nahrstedt J, Freyer J, Gulde S, Doering A, Meisinger C, Klopp N, Illig T, Meinitzer A, Tomaschitz A, Halperin E, Dobnig H, Scharnagl H, Kleber M, Laaksonen R, Pilz S, Grammer TB, Stojakovic T, Renner W, Marz W, Bohm BO, Winkelmann BR, Winkler K, Hoffmann MM, Siscovick DS, Musunuru K, Barbalic M, Guiducci C, Burtt N, Gabriel SB, Stewart AF, Wells GA, Chen L, Jarinova O, Roberts R, McPherson R, Dandona S, Pichard AD, Rader DJ, Devaney J, Lindsay JM, Kent KM, Qu L, Satler L, Burnett MS, Li M, Reilly MP, Wilensky R, Waksman R, Epstein S, Matthai W, Knouff CW, Waterworth DM, Hakonarson HH, Walker MC, Hall AS, Balmforth AJ, Wright BJ, Nelson C, Thompson JR, Ball SG, Felix JF, Demissie S, Loehr LR, Rosamond WD, Folsom AR, Benjamin E, Aulchenko YS, Haritunians T, Couper D, Murabito J, Wang YA, Stricker BH, Gottdiener JS, Chang PP, Willerson JT, Boger CA, Fuchsberger C, Gao X, Yang Q, Schmidt H, Ketkar S, Pare G, Atkinson EJ, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Eiriksdottir G, Launer LJ, Rampersaud E, Mitchell BD, Struchalin M, Cavalieri M, Giallauria F, Metter J, de Boer J, Siscovick D, Zillikens MC, Feitosa M, Province M, de Andrade M, Turner ST, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Zaboli G, Ellinghaus D, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Nauck M, Badola S, Curhan GC, Franke A, Rochat T, Paulweber B, Wang W, Schmidt R, Shlipak MG, Borecki I, Kramer BK, Gyllensten U, Hastie N, Heid IM, Fox CS, Felix SB, Watzinger N, Homuth G, Aragam J, Zweiker R, Lind L, Rodeheffer RJ, Greiser KH, Deckers JW, Stritzke J, Lackner KJ, Ingelsson E, Kullo I, Haerting J, Reffelmann T, Redfield MM, Werdan K, Mitchell GF, Arnett DK, Blettner M, Friedrich N, Benjamin EJ, Lord GM, Gale DP, Wass MN, Ahmadi KR, Beckmann J, Bilo HJ, Cook HT, Cotlarciuc I, Davey Smith G, de Silva R, Deng G, Devuyst O, Dikkeschei LD, Dimkovic N, Dockrell M, Dominiczak A, Ebrahim S, Eggermann T, Floege J, Forouhi NG, Gansevoort RT, Han X, Homan van der Heide JJ, Hepkema BG, Hernandez-Fuentes M, Hypponen E, de Jong PE, Kleefstra N, Lagou V, Lapsley M, Luttropp K, Marechal C, Nordfors L, Penninx BW, Perucha E, Pouta A, Roderick PJ, Ruokonen A, Sanna S, Schalling M, Schlessinger D, Schlieper G, Seelen MA, Smit JH, Stenvinkel P, Sternberg MJ, Swaminathan R, Ubink-Veltmaat LJ, Wallace C, Waterworth D, Zerres K, Waeber G, Maxwell PH, McCarthy MI, Lightstone L. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–109

Over the last decade, different measurements including augmentation index, pulse wave velocity, pulse pressure and small and large artery elasticity have been utilized by different research groups and separate cohorts to measure arterial stiffness. The overwhelming conclusion is that African Americans exhibit impaired arterial stiffness, starting at a younger age, even after controlling for height, weight, LDL-C, diabetes and blood pressure and other risk factors compared to Caucasians (14,6163).

GENETICS OF PULSE PRESSURE

To date, there has been little accomplished in defining the role of genetics in arterial stiffness in any ethnic group, but in particular, African Americans. A long-term goal of genetic studies in the area of arterial stiffness is to identify genes and biological pathways that contribute to early hypertension. A genome-wide linkage scan was performed as part of the Family Blood Pressure Program (FBPP) for loci affecting pulse pressure on 10798 participants in 3320 families(64). The Family Blood Pressure Program, FBPP, was established in 1995 to identify the role of DNA variants in hypertension in African-Americans, Hispanic, Asian and non-Hispanic white populations. Four separate networks are combined to form the FBPP: GenNet, Genetic Epidemiology Network of Arteriopathy (GENOA), Hypertension Genetics, Epidemiology Network (HyperGen), and Stanford Asian Pacific Program in Hypertension and Insulin Resistance (SAPPHIRE) (65). All ascertained families in the network include individuals with hypertension or genetic predisposition towards hypertension (64).

Pulse pressure (the difference between systolic and diastolic blood pressure) is not a direct method of measuring aortic stiffness; yet, pulse pressure has been used as a surrogate marker of arterial compliance. The FBPP linkage scan identified a region on chromosome 7 at 75 cM with a LOD = 3.1 in African Americans (LOD > 3 typically suggests a significant region of linkage), a region on chromosome 19 at 0 cM with a LOD = 3.1 in a combined sample of whites and African Americans, and a region on chromosome 18 at 71 cM with LOD = 3.2 in a combined racial sample (whites, African Americans and Hispanics)(64). Simino et al reported more recent results from the FBPP using an overall meta-analysis and four race-specific meta-analyses of genome wide blood pressure linkage scans. These analyses used data from 13,044 participants and identified one locus associated with pulse pressure (Chromosome 6, position 42.27 cM, LOD = 3.23) from the meta-analysis and a second locus (chromosome 1, 212.44 cM, LOD = 3.16) that associated with pulse pressure in one of the FBPP cohorts (HyperGEN) (66). The locus for pulse pressure on chromosome 6p22.3 was later identified as containing the most associated SNP (rs16877320) with systolic blood pressure in a meta-analysis of normotensive African Americans (67).

The HyperGEN (Hypertension Genetic Epidemiology Network) investigators (a component of the FBPP) performed a genome-wide linkage scan on 1251 African Americans (16). This study identified two regions of linkage with pulse pressure on chromosome 1 at 215 cM (LOD = 3.08) and another locus linked to pulse pressure on chromosome 14 at 85 cM with LOD = 2.42 (16). These loci contain many genes, but the ones closest to the linkage peaks were GPR25 and SMOC1. These regions were not sequenced and there has been no follow up studies as of yet to replicate or confirm these findings.

GENETICS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE/HYPERTENSION

The first GWAS to focus on blood pressure in African Americans was conducted by Adeyemo et al in 2009 in 1017 individuals (509 cases of hypertension and 508 normotensive controls) from the Howard University Family Study (67). No locus met genome wide significance (typically P < 5×10−8) for association with hypertension. Six SNPs met genome-wide significance for association with systolic blood pressure (see Table 1). One of these SNPs (rs3751664) was in a non-synonymous coding region of the gene CACNA1H (calcium channel, voltage-dependent, T-type, alpha 1H subunit, that encodes a member of the alpha-1 subunit family in the voltage-dependent calcium channel complex. No SNPs were found to significantly associate with diastolic blood pressure. The SNPs most associated with systolic blood were used for replication in a cohort of non-diabetic West Africans (n=980). Of the six most associated SNPs with systolic blood pressure in the Howard Family study, the non-synonymous coding SNP in the calcium channel protein (rs3751664) was monomorphic in the West African cohort, and the remaining five were not significantly associated with systolic blood pressure (67). Moreover, for the SNPs tested, the direction of the genotypic effect on blood pressure was not always similar in the original and replication study (67). One explanation for the difference in results is admixture between the discovery cohort (African-Americans) and the replication cohort (West Africa), with its effects on LD structure, allelic frequency distributions, and risk factor profiles (68,69). There was no overlap in the genes identified in this study (67) with the loci associated with impaired arterial elasticity or pulse pressure reported earlier (16,64). Associations with pulse pressure were not reported in this study by Adeyemo (67).

An admixture mapping study has implicated two regions, on 6q24 and 21q21, that may contain genes that influence risk of hypertension in African Americans (70). An admixture mapping approach used in the Dallas Heart Study Cohort implicated the gene, vanin 1 (VNN1) in the region on 6q24, (rs2272996) as associated with the risk for hypertension in African Americans (71). The VNN1 SNP increased risk for hypertension in African Americans yet conferred protection in European Americans (although It did not reach statistical significance in European Americans)(71). Recent transcription profiling work by Blangero and colleagues in lymphocytes suggests that sequence variants in VNN1 are related to HDL cholesterol concentrations (72).

Fox et al (73) examined both genome-wide and candidate gene associations with systolic and diastolic blood pressure in 8,591 African Americans in the NHLBI Candidate Gene Association Resource (CARe) consortium. None of the SNPs tested using either the Affymetrix 6.0 GWAS panel or the ITMAT-Broad_CARe custom SNP array were replicated in an additional 11,882 African Americans or European Americans (69,899) (73). Previously identified blood pressure SNPs in European Americans were identified in African Americans although with weak significance (SH2B3, TBX3-5, DBP) (73). This study highlights many issues currently challenging the field of blood pressure, African-Americans and genetics including the complexity of the phenotype, and the admixture effects in African-Americans. An admixture approach using the CARe consortium in 6,303 African Americans followed by replication in four different African-American populations and one native Nigerian African sample (total n = 11,882) identified a novel SNP, rs7726475, associated with systolic and diastolic blood pressure between genes SUB1 and NPR3 (74).

A recent study by the International Consortium for Blood Pressure Genome-Wide Association Studies in multiple ancestries including a cohort of 19,775 African Americans identified multiple novel loci associated with blood pressure (75). These loci were associated with systolic and diastolic blood pressure in 200,000 Europeans, ~19,000 African Americans, ~ 29,000 East Asians, and ~24,000 South Asians. In African Americans, 22 loci were significantly associated with systolic or diastolic blood pressure (P < 1 × 10−8) (75) (see Table 1). Many of these SNPs were also significant in other race/ethnicities. Genes that had been implicated in previous studies but may have not achieved statistical significance were replicated in this study including (but not limited to) NPR3, SLC4A7, and SH2B3. A new gene SLC39A8, identified to be associated with both systolic and diastolic blood pressure in African Americans, European Americans and South Asians, is also associated with HDL cholesterol levels (similar to VNN1, but not replicated in this analysis). NPR3 encodes the clearance receptor for natriuretic peptide and mice lacking this receptor have reduced blood pressure (76). SLC4A7 is expressed in vascular smooth muscle and the nephron and regulates sodium bicarbonate (77). Knockout of this gene induces mild hypertension in mice. SH2B3 has been implicated in multiple associations with immune and inflammatory diseases as well as hypertension (78,79); however its function remains unknown.

CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS

In sum, the strength of the genetic studies for associations in systolic and diastolic blood pressure in African Americans is at a very early stage and will continue to improve with increased sample size as well as understanding of the complexities in uniqueness between ancestral genomes. The genetic associations between arterial stiffness in African Americans are also at a very early stage. Utilizing pulse pressure to estimate arterial stiffness may be a weakness of the early studies and the small sample size also represents a major hurdle of the early work done in this field. The potential importance of pairing genetics with phenotypic measurements of arterial stiffness include the identification of new pathways for drug development to prevent or inhibit cardiovascular disease.

REFERENCES

  • 1.Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215. doi: 10.1161/CIRCULATIONAHA.109.192667. [DOI] [PubMed] [Google Scholar]
  • 2.Redmond N, Baer HJ, Hicks LS. Health behaviors and racial disparity in blood pressure control in the national health and nutrition examination survey. Hypertension. 2011;57:383–389. doi: 10.1161/HYPERTENSIONAHA.110.161950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep. 2009;57:1–134. [PubMed] [Google Scholar]
  • 4.Dernellis J, Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension. 2005;45:426–431. doi: 10.1161/01.HYP.0000157818.58878.93. [DOI] [PubMed] [Google Scholar]
  • 5.Liao D, Arnett DK, Tyroler HA, et al. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension. 1999;34:201–206. doi: 10.1161/01.hyp.34.2.201. [DOI] [PubMed] [Google Scholar]
  • 6.Peralta CA, Adeney KL, Shlipak MG, et al. Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2010;171:63–71. doi: 10.1093/aje/kwp319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33:1111–1117. doi: 10.1161/01.hyp.33.5.1111. [DOI] [PubMed] [Google Scholar]
  • 8.Femia R, Kozakova M, Nannipieri M, et al. Carotid intima-media thickness in confirmed prehypertensive subjects: predictors and progression. Arterioscler Thromb Vasc Biol. 2007;27:2244–2249. doi: 10.1161/ATVBAHA.107.149641. [DOI] [PubMed] [Google Scholar]
  • 9.Najjar SS, Scuteri A, Shetty V, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–1383. doi: 10.1016/j.jacc.2007.10.065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Heffernan KS, Jae SY, Wilund KR, Woods JA, Fernhall B. Racial differences in central blood pressure and vascular function in young men. Am J Physiol Heart Circ Physiol. 2008;295:H2380–H2387. doi: 10.1152/ajpheart.00902.2008. [DOI] [PubMed] [Google Scholar]
  • 11.Din-Dzietham R, Couper D, Evans G, Arnett DK, Jones DW. Arterial stiffness is greater in African Americans than in whites: evidence from the Forsyth County, North Carolina, ARIC cohort. Am J Hypertens. 2004;17:304–313. doi: 10.1016/j.amjhyper.2003.12.004. [DOI] [PubMed] [Google Scholar]
  • 12.Ferreira AV, Viana MC, Mill JG, Asmar RG, Cunha RS. Racial differences in aortic stiffness in normotensive and hypertensive adults. J Hypertens. 1999;17:631–637. doi: 10.1097/00004872-199917050-00006. [DOI] [PubMed] [Google Scholar]
  • 13.Heffernan KS, Jae SY, Lee M, Woods JA, Fernhall B. Arterial wave reflection and vascular autonomic modulation in young and older men. Aging Clin Exp Res. 2008;20:1–7. doi: 10.1007/BF03324740. [DOI] [PubMed] [Google Scholar]
  • 14.Duprez DA, Jacobs DR, Jr, Lutsey PL, et al. Race/ethnic and sex differences in large and small artery elasticity--results of the multi-ethnic study of atherosclerosis (MESA) Ethn Dis. 2009;19:243–250. [PMC free article] [PubMed] [Google Scholar]
  • 15.Ge D, Young TW, Wang X, Kapuku GK, Treiber FA, Snieder H. Heritability of arterial stiffness in black and white American youth and young adults. Am J Hypertens. 2007;20:1065–1072. doi: 10.1016/j.amjhyper.2007.05.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Sherva R, Miller MB, Lynch AI, et al. A whole genome scan for pulse pressure/stroke volume ratio in African Americans: the HyperGEN study. Am J Hypertens. 2007;20:398–402. doi: 10.1016/j.amjhyper.2006.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Akasaka H, Katsuya T, Saitoh S, et al. A promoter polymorphism of lamin A/C gene is an independent genetic predisposition to arterial stiffness in a Japanese general population (the Tanno and Sobetsu study) J Atheroscler Thromb. 2009;16:404–409. doi: 10.5551/jat.no1271. [DOI] [PubMed] [Google Scholar]
  • 18.Baker M, Rahman T, Hall D, et al. The C-532T polymorphism of the angiotensinogen gene is associated with pulse pressure: a possible explanation for heterogeneity in genetic association studies of AGT and hypertension. Int J Epidemiol. 2007;36:1356–1362. doi: 10.1093/ije/dym213. [DOI] [PubMed] [Google Scholar]
  • 19.Bjorck HM, Lanne T, Alehagen U, et al. Association of genetic variation on chromosome 9p21.3 and arterial stiffness. J Intern Med. 2009;265:373–381. doi: 10.1111/j.1365-2796.2008.02020.x. [DOI] [PubMed] [Google Scholar]
  • 20.Chen W, Srinivasan SR, Boerwinkle E, Berenson GS. Beta-adrenergic receptor genes are associated with arterial stiffness in black and white adults: the Bogalusa Heart Study. Am J Hypertens. 2007;20:1251–1257. doi: 10.1016/j.amjhyper.2007.09.002. [DOI] [PubMed] [Google Scholar]
  • 21.Chen W, Srinivasan SR, Li S, Boerwinkle E, Berenson GS. Gender-specific influence of NO synthase gene on blood pressure since childhood: the Bogalusa Heart Study. Hypertension. 2004;44:668–673. doi: 10.1161/01.HYP.0000145474.23750.2b. [DOI] [PubMed] [Google Scholar]
  • 22.Dima I, Vlachopoulos C, Alexopoulos N, et al. Association of arterial stiffness with the angiotensin-converting enzyme gene polymorphism in healthy individuals. Am J Hypertens. 2008;21:1354–1358. doi: 10.1038/ajh.2008.295. [DOI] [PubMed] [Google Scholar]
  • 23.Durier S, Fassot C, Laurent S, et al. Physiological genomics of human arteries: quantitative relationship between gene expression and arterial stiffness. Circulation. 2003;108:1845–1851. doi: 10.1161/01.CIR.0000091407.86925.7A. [DOI] [PubMed] [Google Scholar]
  • 24.Engelen L, Ferreira I, Gaens KH, et al. The association between the -374T/A polymorphism of the receptor for advanced glycation endproducts gene and blood pressure and arterial stiffness is modified by glucose metabolism status: the Hoorn and CoDAM studies. J Hypertens. 2010;28:285–293. doi: 10.1097/HJH.0b013e3283330931. [DOI] [PubMed] [Google Scholar]
  • 25.Fava C, Ricci MS, Burri P, Minuz P, Melander O. Heritability of the ambulatory arterial stiffness index in Swedish families. J Hum Hypertens. 2008;22:298–300. doi: 10.1038/sj.jhh.1002323. [DOI] [PubMed] [Google Scholar]
  • 26.Franceschini N, MacCluer JW, Rose KM, et al. Genome-wide linkage analysis of pulse pressure in American Indians: the Strong Heart Study. Am J Hypertens. 2008;21:194–199. doi: 10.1038/ajh.2007.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Gardier S, Vincent M, Lantelme P, Rial MO, Bricca G, Milon H. A1166C polymorphism of angiotensin II type 1 receptor, blood pressure and arterial stiffness in hypertension. J Hypertens. 2004;22:2135–2142. doi: 10.1097/00004872-200411000-00016. [DOI] [PubMed] [Google Scholar]
  • 28.Greenwald SE. Ageing of the conduit arteries. J Pathol. 2007;211:157–172. doi: 10.1002/path.2268. [DOI] [PubMed] [Google Scholar]
  • 29.Iemitsu M, Maeda S, Otsuki T, et al. Arterial stiffness, physical activity, and atrial natriuretic Peptide gene polymorphism in older subjects. Hypertens Res. 2008;31:767–774. doi: 10.1291/hypres.31.767. [DOI] [PubMed] [Google Scholar]
  • 30.Iemitsu M, Maeda S, Otsuki T, et al. Polymorphism in endothelin-related genes limits exercise-induced decreases in arterial stiffness in older subjects. Hypertension. 2006;47:928–936. doi: 10.1161/01.HYP.0000217520.44176.73. [DOI] [PubMed] [Google Scholar]
  • 31.Kelley-Hedgepeth A, Peter I, Montefusco MC, et al. The KCNMB1 E65K variant is associated with reduced central pulse pressure in the community-based Framingham Offspring Cohort. J Hypertens. 2009;27:55–60. doi: 10.1097/HJH.0b013e328317c8ae. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Lajemi M, Labat C, Gautier S, et al. Angiotensin II type 1 receptor-153A/G and 1166A/C gene polymorphisms and increase in aortic stiffness with age in hypertensive subjects. J Hypertens. 2001;19:407–413. doi: 10.1097/00004872-200103000-00008. [DOI] [PubMed] [Google Scholar]
  • 33.Levy D, Larson MG, Benjamin EJ, et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8(Suppl 1):S3. doi: 10.1186/1471-2350-8-S1-S3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Mattace-Raso FU, van der Cammen TJ, Sayed-Tabatabaei FA, et al. Angiotensin-converting enzyme gene polymorphism and common carotid stiffness. The Rotterdam study. Atherosclerosis. 2004;174:121–126. doi: 10.1016/j.atherosclerosis.2004.01.012. [DOI] [PubMed] [Google Scholar]
  • 35.Mayer O, Jr, Filipovsky J, Pesta M, Cifkova R, Dolejsova M, Simon J. Synergistic effect of angiotensin II type 1 receptor and endothelial nitric oxide synthase gene polymorphisms on arterial stiffness. J Hum Hypertens. 2008;22:111–118. doi: 10.1038/sj.jhh.1002279. [DOI] [PubMed] [Google Scholar]
  • 36.Mitchell GF, DeStefano AL, Larson MG, et al. Heritability and a genome-wide linkage scan for arterial stiffness, wave reflection, and mean arterial pressure: the Framingham Heart Study. Circulation. 2005;112:194–199. doi: 10.1161/CIRCULATIONAHA.104.530675. [DOI] [PubMed] [Google Scholar]
  • 37.Mitchell GF, Guo CY, Kathiresan S, et al. Vascular stiffness and genetic variation at the endothelial nitric oxide synthase locus: the Framingham Heart study. Hypertension. 2007;49:1285–1290. doi: 10.1161/HYPERTENSIONAHA.106.085266. [DOI] [PubMed] [Google Scholar]
  • 38.North KE, MacCluer JW, Devereux RB, et al. Heritability of carotid artery structure and function: the Strong Heart Family Study. Arterioscler Thromb Vasc Biol. 2002;22:1698–1703. doi: 10.1161/01.atv.0000032656.91352.5e. [DOI] [PubMed] [Google Scholar]
  • 39.Peter I, Kelley-Hedgepeth A, Huggins GS, et al. Association between arterial stiffness and variations in oestrogen-related genes. J Hum Hypertens. 2009;23:636–644. doi: 10.1038/jhh.2009.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Plat AW, Stoffers HE, de Leeuw PW, et al. The association between arterial stiffness and the angiotensin II type 1 receptor (A1166C) polymorphism is influenced by the use of cardiovascular medication. J Hypertens. 2009;27:69–75. doi: 10.1097/hjh.0b013e328317f215. [DOI] [PubMed] [Google Scholar]
  • 41.Rehman A, Ismail SB, Naing L, Roshan TM, Rahman AR. Reduction in arterial stiffness with angiotensin II antagonism and converting enzyme inhibition. A comparative study among malay hypertensive subjects with a known genetic profile. Am J Hypertens. 2007;20:184–189. doi: 10.1016/j.amjhyper.2006.07.015. [DOI] [PubMed] [Google Scholar]
  • 42.Safar ME, Cattan V, Lacolley P, et al. Aldosterone synthase gene polymorphism, stroke volume and age-related changes in aortic pulse wave velocity in subjects with hypertension. J Hypertens. 2005;23:1159–1166. doi: 10.1097/01.hjh.0000170378.08214.13. [DOI] [PubMed] [Google Scholar]
  • 43.Schnabel R, Larson MG, Dupuis J, et al. Relations of inflammatory biomarkers and common genetic variants with arterial stiffness and wave reflection. Hypertension. 2008;51:1651–1657. doi: 10.1161/HYPERTENSIONAHA.107.105668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Seidlerova J, Bochud M, Staessen JA, et al. Heritability and intrafamilial aggregation of arterial characteristics. J Hypertens. 2008;26:721–728. doi: 10.1097/HJH.0b013e3282f4d1e7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sie MP, Isaacs A, de Maat MP, et al. Genetic variation in the fibrinogen-alpha and fibrinogen-gamma genes in relation to arterial stiffness: the Rotterdam Study. J Hypertens. 2009;27:1392–1398. doi: 10.1097/HJH.0b013e32832a95b0. [DOI] [PubMed] [Google Scholar]
  • 46.Sie MP, Mattace-Raso FU, Uitterlinden AG, et al. TGF-beta1 polymorphisms and arterial stiffness; the Rotterdam Study. J Hum Hypertens. 2007;21:431–437. doi: 10.1038/sj.jhh.1002175. [DOI] [PubMed] [Google Scholar]
  • 47.Sie MP, Yazdanpanah M, Mattace-Raso FU, et al. Genetic variation in the rennin-angiotensin system and arterial stiffness. The Rotterdam Study. Clin Exp Hypertens. 2009;31:389–399. doi: 10.1080/10641960802668706. [DOI] [PubMed] [Google Scholar]
  • 48.Tarasov KV, Sanna S, Scuteri A, et al. COL4A1 is associated with arterial stiffness by genome-wide association scan. Circ Cardiovasc Genet. 2009;2:151–158. doi: 10.1161/CIRCGENETICS.108.823245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Vlachopoulos C, Terentes-Printzios D, Dima I, Aznaouridis K, Stefanadis C. Polymorphisms of inflammatory markers/mediators and arterial stiffness. Hypertension. 2009;53:e39. doi: 10.1161/HYPERTENSIONAHA.109.129361. author reply e40. [DOI] [PubMed] [Google Scholar]
  • 50.Wojciechowska W, Staessen JA, Stolarz K, et al. Association of peripheral and central arterial wave reflections with the CYP11B2-344C allele and sodium excretion. J Hypertens. 2004;22:2311–2319. doi: 10.1097/00004872-200412000-00013. [DOI] [PubMed] [Google Scholar]
  • 51.Yasmin, Falzone R, Brown MJ. Determinants of arterial stiffness in offspring of families with essential hypertension. Am J Hypertens. 2004;17:292–298. doi: 10.1016/j.amjhyper.2003.12.002. [DOI] [PubMed] [Google Scholar]
  • 52.Yasmin, McEniery CM, O'Shaughnessy KM, et al. Variation in the human matrix metalloproteinase-9 gene is associated with arterial stiffness in healthy individuals. Arterioscler Thromb Vasc Biol. 2006;26:1799–1805. doi: 10.1161/01.ATV.0000227717.46157.32. [DOI] [PubMed] [Google Scholar]
  • 53.Yasmin, O'Shaughnessy KM, McEniery CM, Cockcroft JR, Wilkinson IB. Genetic variation in fibrillin-1 gene is not associated with arterial stiffness in apparently healthy individuals. J Hypertens. 2006;24:499–502. doi: 10.1097/01.hjh.0000209986.74477.18. [DOI] [PubMed] [Google Scholar]
  • 54.Ye S. Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome. Cardiovasc Res. 2006;69:636–645. doi: 10.1016/j.cardiores.2005.07.015. [DOI] [PubMed] [Google Scholar]
  • 55.Yuan M, Ohishi M, Ito N, et al. Genetic influences of beta-adrenoceptor polymorphisms on arterial functional changes and cardiac remodeling in hypertensive patients. Hypertens Res. 2006;29:875–881. doi: 10.1291/hypres.29.875. [DOI] [PubMed] [Google Scholar]
  • 56.Zhou S, Feely J, Spiers JP, Mahmud A. Matrix metalloproteinase-9 polymorphism contributes to blood pressure and arterial stiffness in essential hypertension. J Hum Hypertens. 2007;21:861–867. doi: 10.1038/sj.jhh.1002244. [DOI] [PubMed] [Google Scholar]
  • 57.Chirinos JA, Kips JG, Roman MJ, et al. Ethnic differences in arterial wave reflections and normative equations for augmentation index. Hypertension. 2011;57:1108–1116. doi: 10.1161/HYPERTENSIONAHA.110.166348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Heffernan KS, Jae SY, Fernhall B. Racial differences in arterial stiffness after exercise in young men. Am J Hypertens. 2007;20:840–845. doi: 10.1016/j.amjhyper.2007.03.015. [DOI] [PubMed] [Google Scholar]
  • 59.Shah AS, Dolan LM, Gao Z, Kimball TR, Urbina EM. Racial differences in arterial stiffness among adolescents and young adults with type 2 diabetes. Pediatr Diabetes. :2011. doi: 10.1111/j.1399-5448.2011.00798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Zion AS, Bond V, Adams RG, et al. Low arterial compliance in young African-American males. Am J Physiol Heart Circ Physiol. 2003;285:H457–H462. doi: 10.1152/ajpheart.00497.2002. [DOI] [PubMed] [Google Scholar]
  • 61.Bhuiyan AR, Li S, Li H, Chen W, Srinivasan SR, Berenson GS. Distribution and correlates of arterial compliance measures in asymptomatic young adults: the Bogalusa Heart Study. Am J Hypertens. 2005;18:684–691. doi: 10.1016/j.amjhyper.2004.11.039. [DOI] [PubMed] [Google Scholar]
  • 62.Gardner AW, Montgomery PS, Blevins SM, Parker DE. Gender and ethnic differences in arterial compliance in patients with intermittent claudication. J Vasc Surg. 2010;51:610–615. doi: 10.1016/j.jvs.2009.09.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Wassel CL, Jacobs DR, Jr, Duprez DA, et al. Association of self-reported race/ethnicity and genetic ancestry with arterial elasticity: the Multi-Ethnic Study of Atherosclerosis (MESA) J Am Soc Hypertens. 2011;5:463–472. doi: 10.1016/j.jash.2011.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Bielinski SJ, Lynch AI, Miller MB, et al. Genome-wide linkage analysis for loci affecting pulse pressure: the Family Blood Pressure Program. Hypertension. 2005;46:1286–1293. doi: 10.1161/01.HYP.0000191706.41980.29. [DOI] [PubMed] [Google Scholar]
  • 65.Multi-center genetic study of hypertension: The Family Blood Pressure Program (FBPP) Hypertension. 2002;39:3–9. doi: 10.1161/hy1201.100415. [DOI] [PubMed] [Google Scholar]
  • 66.Simino J, Shi G, Kume R, et al. Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program. Am J Hypertens. 2011;24:347–354. doi: 10.1038/ajh.2010.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Adeyemo A, Gerry N, Chen G, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5:e1000564. doi: 10.1371/journal.pgen.1000564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Parra EJ, Marcini A, Akey J, et al. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet. 1998;63:1839–1851. doi: 10.1086/302148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Xu S, Huang W, Wang H, et al. Dissecting linkage disequilibrium in African-American genomes: roles of markers and individuals. Mol Biol Evol. 2007;24:2049–2058. doi: 10.1093/molbev/msm135. [DOI] [PubMed] [Google Scholar]
  • 70.Zhu X, Luke A, Cooper RS, et al. Admixture mapping for hypertension loci with genome-scan markers. Nat Genet. 2005;37:177–181. doi: 10.1038/ng1510. [DOI] [PubMed] [Google Scholar]
  • 71.Zhu X, Cooper RS. Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PLoS One. 2007;2:e1244. doi: 10.1371/journal.pone.0001244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Goring HH, Curran JE, Johnson MP, et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet. 2007;39:1208–1216. doi: 10.1038/ng2119. [DOI] [PubMed] [Google Scholar]
  • 73.Fox ER, Young JH, Li Y, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet. 2011;20:2273–2284. doi: 10.1093/hmg/ddr092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Zhu X, Young JH, Fox E, et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum Mol Genet. 2011;20:2285–2295. doi: 10.1093/hmg/ddr113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–109. doi: 10.1038/nature10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Matsukawa N, Grzesik WJ, Takahashi N, et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A. 1999;96:7403–7408. doi: 10.1073/pnas.96.13.7403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Boedtkjer E, Praetorius J, Matchkov VV, et al. Disruption of Na+,HCO cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca(2) sensitivity, and hypertension development in mice. Circulation. 2011;124:1819–1829. doi: 10.1161/CIRCULATIONAHA.110.015974. [DOI] [PubMed] [Google Scholar]
  • 78.Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40:395–402. doi: 10.1038/ng.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Smyth DJ, Plagnol V, Walker NM, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359:2767–2777. doi: 10.1056/NEJMoa0807917. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES