Abstract
We have determined the nucleotide sequence of a 1.4-kb-pair fragment of the E. coli chromosome that carries the complete rnd gene encoding RNase D, a putative tRNA processing enzyme. The coding region of rnd extends for a total of 1128 nucleotides beginning at an initiator UUG codon and terminating at a UAA codon, and encodes a 375-amino acid polypeptide of 42,679 daltons, consistent with the known size of RNase D. A rapid purification procedure was developed for isolation of RNase D from strains overexpressing the enzyme. The N-terminal sequence and the amino acid composition of the homogenous protein were in excellent agreement with those derived from the sequence of the rnd gene.
Full text
PDF![6265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/5b92623a29de/nar00167-0013.png)
![6266](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/176fb4b2f84b/nar00167-0014.png)
![6267](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/8c3bd776cde8/nar00167-0015.png)
![6268](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/f5139199b1af/nar00167-0016.png)
![6269](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/6805b138980d/nar00167-0017.png)
![6270](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/801ab3667950/nar00167-0018.png)
![6271](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/e59756daf43b/nar00167-0019.png)
![6272](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/6faa18c8c01e/nar00167-0020.png)
![6273](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/c34c40794c44/nar00167-0021.png)
![6274](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/7ac2717abf44/nar00167-0022.png)
![6275](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/b8347918a49a/nar00167-0023.png)
![6276](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/fe0867ba2433/nar00167-0024.png)
![6277](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/22c2300835f0/nar00167-0025.png)
![6278](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81fb/338294/ba94c9f093c3/nar00167-0026.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blouin R. T., Zaniewski R., Deutscher M. P. Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA. J Biol Chem. 1983 Feb 10;258(3):1423–1426. [PubMed] [Google Scholar]
- Cudny H., Deutscher M. P. Apparent involvement of ribonuclease D in the 3' processing of tRNA precursors. Proc Natl Acad Sci U S A. 1980 Feb;77(2):837–841. doi: 10.1073/pnas.77.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudny H., Zaniewski R., Deutscher M. P. Escherichia coli RNase D. Purification and structural characterization of a putative processing nuclease. J Biol Chem. 1981 Jun 10;256(11):5627–5632. [PubMed] [Google Scholar]
- Dale R. M., McClure B. A., Houchins J. P. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid. 1985 Jan;13(1):31–40. doi: 10.1016/0147-619x(85)90053-8. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P., Ghosh R. K. Preparation of synthetic tRNA precursors with tRNA nucleotidyltransferase. Nucleic Acids Res. 1978 Oct;5(10):3821–3829. doi: 10.1093/nar/5.10.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P., Marlor C. W., Zaniewski R. RNase T is responsible for the end-turnover of tRNA in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6427–6430. doi: 10.1073/pnas.82.19.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P. Processing of tRNA in prokaryotes and eukaryotes. CRC Crit Rev Biochem. 1984;17(1):45–71. doi: 10.3109/10409238409110269. [DOI] [PubMed] [Google Scholar]
- Dreyfuss G., Adam S. A., Choi Y. D. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol. 1984 Mar;4(3):415–423. doi: 10.1128/mcb.4.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh R. K., Deutscher M. P. Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J Biol Chem. 1978 Feb 25;253(4):997–1000. [PubMed] [Google Scholar]
- Ikemura T., Ozeki H. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1087–1097. doi: 10.1101/sqb.1983.047.01.123. [DOI] [PubMed] [Google Scholar]
- Kanaya S., Crouch R. J. DNA sequence of the gene coding for Escherichia coli ribonuclease H. J Biol Chem. 1983 Jan 25;258(2):1276–1281. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- March P. E., Ahnn J., Inouye M. The DNA sequence of the gene (rnc) encoding ribonuclease III of Escherichia coli. Nucleic Acids Res. 1985 Jul 11;13(13):4677–4685. doi: 10.1093/nar/13.13.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T., Gojobori T., Aota S., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1986;14 (Suppl):r151–r197. doi: 10.1093/nar/14.suppl.r151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- Mulligan M. E., Hawley D. K., Entriken R., McClure W. R. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):789–800. doi: 10.1093/nar/12.1part2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy P., Peterkofsky A., McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. doi: 10.1073/pnas.82.17.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Régnier P., Grunberg-Manago M., Portier C. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem. 1987 Jan 5;262(1):63–68. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]