Abstract
Tobacco Mosaic Virus capsid protein oligomers react with and encapsidate 18S rRNA from both plant and mammalian sources in vitro. The site (ei) in 18S rRNA which reacts with capsid protein to initiate the packaging reaction has been localized and partially characterized by testing the ability of transcripts from different regions of a cloned Cucurbita pepo rDNA repeat unit to become encapsidated. The 18S rRNA ei is found to react more slowly with capsid protein than does the functional virion ei and to lie within a 43 nucleotide region which starts at position 157 from the 5' terminus of 18S rRNA. When 6 nucleotides are removed from the 5' end, the remaining 37 nucleotide segment is still reactive, but with reduced efficiency. The primary structure of the reactive segment has limited similarity to the virion ei and can be folded into a stem-loop. The first 18 nucleotides of the ei region is highly conserved from an evolutionary standpoint and this may account for the ability of 18S rRNAs from both plant and mammalian sources to be encapsidated.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
- Butler P. J. The current picture of the structure and assembly of tobacco mosaic virus. J Gen Virol. 1984 Feb;65(Pt 2):253–279. doi: 10.1099/0022-1317-65-2-253. [DOI] [PubMed] [Google Scholar]
- Chan Y. L., Gutell R., Noller H. F., Wool I. G. The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem. 1984 Jan 10;259(1):224–230. [PubMed] [Google Scholar]
- Eckenrode V. K., Arnold J., Meagher R. B. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol. 1984;21(3):259–269. doi: 10.1007/BF02102358. [DOI] [PubMed] [Google Scholar]
- FRAENKEL-CONRAT H. Degradation of tobacco mosaic virus with acetic acid. Virology. 1957 Aug;4(1):1–4. doi: 10.1016/0042-6822(57)90038-7. [DOI] [PubMed] [Google Scholar]
- Maden B. E., Moss M., Salim M. Nucleotide sequence of an external transcribed spacer in Xenopus laevis rDNA: sequences flanking the 5' and 3' ends of 18S rRNA are non-complementary. Nucleic Acids Res. 1982 Apr 10;10(7):2387–2398. doi: 10.1093/nar/10.7.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meshi T., Ohno T., Iba H., Okada Y. Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3' non-coding region. Mol Gen Genet. 1981;184(1):20–25. doi: 10.1007/BF00271189. [DOI] [PubMed] [Google Scholar]
- Nelles L., Fang B. L., Volckaert G., Vandenberghe A., De Wachter R. Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs. Nucleic Acids Res. 1984 Dec 11;12(23):8749–8768. doi: 10.1093/nar/12.23.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raynal F., Michot B., Bachellerie J. P. Complete nucleotide sequence of mouse 18 S rRNA gene: comparison with other available homologs. FEBS Lett. 1984 Feb 27;167(2):263–268. doi: 10.1016/0014-5793(84)80139-8. [DOI] [PubMed] [Google Scholar]
- Rochon D., Kelly R., Siegel A. Encapsidation of 18 S rRNA by tobacco mosaic virus coat protein. Virology. 1986 Apr 15;150(1):140–148. doi: 10.1016/0042-6822(86)90273-4. [DOI] [PubMed] [Google Scholar]
- Rochon D., Siegel A. Chloroplast DNA transcripts are encapsidated by tobacco mosaic virus coat protein. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1719–1723. doi: 10.1073/pnas.81.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubtsov P. M., Musakhanov M. M., Zakharyev V. M., Krayev A. S., Skryabin K. G., Bayev A. A. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 1980 Dec 11;8(23):5779–5794. doi: 10.1093/nar/8.23.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel A., Kolacz K. Heterogeneity of pumpkin ribosomal DNA. Plant Physiol. 1983 May;72(1):166–171. doi: 10.1104/pp.72.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torczynski R. M., Fuke M., Bollon A. P. Cloning and sequencing of a human 18S ribosomal RNA gene. DNA. 1985 Aug;4(4):283–291. doi: 10.1089/dna.1985.4.283. [DOI] [PubMed] [Google Scholar]
- Turner D. R., Butler P. J. Essential features of the assembly origin of tobacco mosaic virus RNA as studied by directed mutagenesis. Nucleic Acids Res. 1986 Dec 9;14(23):9229–9242. doi: 10.1093/nar/14.23.9229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vissel B., Choo K. H. Altered activity of restriction endonuclease Mn1-I cleavage of mouse satellite DNA. Nucleic Acids Res. 1988 May 25;16(10):4731–4731. doi: 10.1093/nar/16.10.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmern D. The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell. 1977 Jul;11(3):463–482. doi: 10.1016/0092-8674(77)90065-4. [DOI] [PubMed] [Google Scholar]
- Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]