Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Aug 11;16(15):7405–7418. doi: 10.1093/nar/16.15.7405

Pulsed homogeneous orthogonal field gel electrophoresis (PHOGE).

I Bancroft 1, C P Wolk 1
PMCID: PMC338417  PMID: 3412891

Abstract

A versatile system (PHOGE) has been developed that allows resolution of molecules of DNA megabase pair size by the use of homogeneous, orthogonal, pulsed fields. The resulting electrophoretograms have characteristics that differ from those produced by other systems for pulsed field electrophoresis. Molecules in a two-fold range of sizes can be separated with maximum resolution, or a much larger range of sizes may be separated with lower resolution but with a linear relationship of mobility to size from 50 kb, or below, to at least 1 Mb. Straight lanes and large useable gel areas, characteristic of PHOGE, are also valuable for mapping procedures or for any other circumstance in which large numbers of samples of DNA are to be directly compared. Existing models cannot explain the results obtained, because a stage of the molecular reorientation appears to result in a rate of migration greater than that occurring by reptation. We suggest a mechanism that might account for the resolution observed and also suggest that the resolution achieved by existing OFAGE-type systems may be the result of the superimposition of PHOGE and FIGE separatory mechanisms. No maximum size of molecules that may be resolved by the PHOGE system has yet been determined.

Full text

PDF
7405

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byers B., Goetsch L. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5056–5060. doi: 10.1073/pnas.72.12.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  3. Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  5. Deutsch J. M. Theoretical studies of DNA during gel electrophoresis. Science. 1988 May 13;240(4854):922–924. doi: 10.1126/science.3363374. [DOI] [PubMed] [Google Scholar]
  6. Lalande M., Noolandi J., Turmel C., Rousseau J., Slater G. W. Pulsed-field electrophoresis: application of a computer model to the separation of large DNA molecules. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8011–8015. doi: 10.1073/pnas.84.22.8011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lumpkin O. J., Déjardin P., Zimm B. H. Theory of gel electrophoresis of DNA. Biopolymers. 1985 Aug;24(8):1573–1593. doi: 10.1002/bip.360240812. [DOI] [PubMed] [Google Scholar]
  8. Schwartz D. C., Saffran W., Welsh J., Haas R., Goldenberg M., Cantor C. R. New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):189–195. doi: 10.1101/sqb.1983.047.01.024. [DOI] [PubMed] [Google Scholar]
  9. Serwer P. Electrophoresis of duplex deoxyribonucleic acid in multiple-concentration agarose gels: fractionation of molecules with molecular weights between 2 X 10(6) and 110 X 10(6). Biochemistry. 1980 Jun 24;19(13):3001–3004. doi: 10.1021/bi00554a026. [DOI] [PubMed] [Google Scholar]
  10. Southern E. M., Anand R., Brown W. R., Fletcher D. S. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res. 1987 Aug 11;15(15):5925–5943. doi: 10.1093/nar/15.15.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES