Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Oct 11;16(19):9299–9306. doi: 10.1093/nar/16.19.9299

Mutational study of the rRNA in yeast mitochondria: functional importance of T1696 in the large rRNA gene.

B Daignan-Fornier 1, M Bolotin-Fukuhara 1
PMCID: PMC338707  PMID: 3050898

Abstract

Four intragenic suppressors of a mitochondrial mutation in the 21S rRNA gene have been characterized in S. cerevisiae. The determination of the nature of the nucleotide changes in the suppressor strains showed that a T at position 1696 in the large rRNA gene is essential for correct function of the mitoribosome. The importance of this specific nucleotide and the fact that this mitochondrial mutation can also be suppressed by a mutation in a nuclear gene are in good agreement with a rRNA-r protein interaction in this part of domain IV, which functional importance is demonstrated in vivo by our results.

Full text

PDF
9299

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolotin-Fukuhara M., Fay G., Fukuhara H. Temperature-sensitive respiratory-deficient mitochondrial mutations: isolation and genetic mapping. Mol Gen Genet. 1977 Apr 29;152(3):295–305. doi: 10.1007/BF00693083. [DOI] [PubMed] [Google Scholar]
  2. Bolotin-Fukuhara M. Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. I. Genetics. Mol Gen Genet. 1979;177(1):39–46. doi: 10.1007/BF00267251. [DOI] [PubMed] [Google Scholar]
  3. Casey J. W., Hsu H. J., Rabinowitz M., Getz G. S., Fukuhara H. Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J Mol Biol. 1974 Oct 5;88(4):717–733. doi: 10.1016/0022-2836(74)90395-7. [DOI] [PubMed] [Google Scholar]
  4. Chan Y. L., Olvera J., Wool I. G. The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Res. 1983 Nov 25;11(22):7819–7831. doi: 10.1093/nar/11.22.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Contamine V., Bolotin-Fukuhara M. A mitochondrial ribosomal RNA mutation and its nuclear suppressors. Mol Gen Genet. 1984;193(2):280–287. doi: 10.1007/BF00330681. [DOI] [PubMed] [Google Scholar]
  6. Czernilofsky A. P., Collatz E. E., Stöffler G., Kuechler E. Proteins at the tRNA binding sites of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1974 Jan;71(1):230–234. doi: 10.1073/pnas.71.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards K., Kössel H. The rRNA operon from Zea mays chloroplasts: nucleotide sequence of 23S rDNA and its homology with E.coli 23S rDNA. Nucleic Acids Res. 1981 Jun 25;9(12):2853–2869. doi: 10.1093/nar/9.12.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gulle H., Hoppe E., Osswald M., Greuer B., Brimacombe R., Stöffler G. RNA-protein cross-linking in Escherichia coli 50S ribosomal subunits; determination of sites on 23S RNA that are cross-linked to proteins L2, L4, L24 and L27 by treatment with 2-iminothiolane. Nucleic Acids Res. 1988 Feb 11;16(3):815–832. doi: 10.1093/nar/16.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kop J., Wheaton V., Gupta R., Woese C. R., Noller H. F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Bacillus stearothermophilus. DNA. 1984 Oct;3(5):347–357. doi: 10.1089/dna.1984.3.347. [DOI] [PubMed] [Google Scholar]
  10. Köchel H. G., Küntzel H. Mitochondrial L-rRNA from Aspergillus nidulans: potential secondary structure and evolution. Nucleic Acids Res. 1982 Aug 11;10(15):4795–4801. doi: 10.1093/nar/10.15.4795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Michot B., Hassouna N., Bachellerie J. P. Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res. 1984 May 25;12(10):4259–4279. doi: 10.1093/nar/12.10.4259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  13. Oen H., Pellegrini M., Eilat D., Cantor C. R. Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2799–2803. doi: 10.1073/pnas.70.10.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Otsuka T., Nomiyama H., Yoshida H., Kukita T., Kuhara S., Sakaki Y. Complete nucleotide sequence of the 26S rRNA gene of Physarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3163–3167. doi: 10.1073/pnas.80.11.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sor F., Faye G. Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. II. Biochemistry. Mol Gen Genet. 1979;177(1):47–56. doi: 10.1007/BF00267252. [DOI] [PubMed] [Google Scholar]
  17. Sor F., Fukuhara H. Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria. Nucleic Acids Res. 1983 Jan 25;11(2):339–348. doi: 10.1093/nar/11.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Veldman G. M., Klootwijk J., de Regt V. C., Planta R. J., Branlant C., Krol A., Ebel J. P. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 1981 Dec 21;9(24):6935–6952. doi: 10.1093/nar/9.24.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ware V. C., Tague B. W., Clark C. G., Gourse R. L., Brand R. C., Gerbi S. A. Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis. Nucleic Acids Res. 1983 Nov 25;11(22):7795–7817. doi: 10.1093/nar/11.22.7795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Waugh D. S., Pace N. R. Catalysis by RNA. Bioessays. 1986 Feb;4(2):56–61. doi: 10.1002/bies.950040204. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES