Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Nov 11;16(21):10301–10321. doi: 10.1093/nar/16.21.10301

Kinetic analysis for optimization of DNA ligation reactions.

D Revie 1, D W Smith 1, T W Yee 1
PMCID: PMC338853  PMID: 2848221

Abstract

Kinetic equations describing ligation of DNA to circular recombinant forms were developed and solved for four types of reactions: (a) a homogeneous population of singly restricted DNA fragments, (b) insertion of singly restricted insert into vector, (c) forced directional insertion of doubly restricted insert into vector, and (d) insertion of singly restricted insert into phosphatased vector. The effects of varying vector and insert sizes, starting concentrations, and phosphatase treatment on the yield of circular 1:1 recombinants were analyzed. Selected theoretical predictions were experimentally tested and verified. Our suggestions on optimizing ligation reactions in several cases are at variance with common practice. For example, optimum conditions in case (b) and (d) ligations are best specified as individual insert and vector concentrations rather than as insert/vector molar ratios, except in case (d) ligations involving very small insert size. In case (c) ligations, highest efficiencies are obtained when both vector and insert are at relatively low concentration.

Full text

PDF
10301

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. Positive selection for loss of tetracycline resistance. J Bacteriol. 1980 Aug;143(2):926–933. doi: 10.1128/jb.143.2.926-933.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins J., Hohn B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4242–4246. doi: 10.1073/pnas.75.9.4242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dardel F. Computer simulation of DNA ligation: determination of initial DNA concentrations favouring the formation of recombinant molecules. Nucleic Acids Res. 1988 Mar 11;16(5):1767–1778. doi: 10.1093/nar/16.5.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dugaiczyk A., Boyer H. W., Goodman H. M. Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol. 1975 Jul 25;96(1):171–184. doi: 10.1016/0022-2836(75)90189-8. [DOI] [PubMed] [Google Scholar]
  5. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  6. Hohn T., Katsura I. Structure and assembly of bacteriophage lambda. Curr Top Microbiol Immunol. 1977;78:69–110. doi: 10.1007/978-3-642-66800-5_3. [DOI] [PubMed] [Google Scholar]
  7. Legerski R. J., Robberson D. L. Analysis and optimization of recombinant DNA joining reactions. J Mol Biol. 1985 Jan 20;181(2):297–312. doi: 10.1016/0022-2836(85)90093-2. [DOI] [PubMed] [Google Scholar]
  8. Levene S. D., Crothers D. M. Ring closure probabilities for DNA fragments by Monte Carlo simulation. J Mol Biol. 1986 May 5;189(1):61–72. doi: 10.1016/0022-2836(86)90381-5. [DOI] [PubMed] [Google Scholar]
  9. Malik V. S. Recombinant DNA technology. Adv Appl Microbiol. 1981;27:1–84. doi: 10.1016/s0065-2164(08)70341-1. [DOI] [PubMed] [Google Scholar]
  10. Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
  11. Marini J. C., Levene S. D., Crothers D. M., Englund P. T. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7664–7668. doi: 10.1073/pnas.79.24.7664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mashko S. V., Mironov A. A., Sorokin A. V., Bratus' A. S., Kozlov Iu I. Issledovanie kinetiki reaktsii vossoedineniia fragmentov DNK, kataliziruemoi DNK-ligazoi. II. Geterogennaia smes' fragmentov. Optimizatsiia uslovii reaktsii ligirovaniia. Mol Biol (Mosk) 1981 Nov-Dec;15(6):1397–1404. [PubMed] [Google Scholar]
  13. Mashko S. V., Rozino M. N., Kozlov Iu I., Rebentish B. A., Bratus' A. S. Isledovanie kinetiki reaktsii vossoedineniia fragementov DNK, kataliziruemoi DNK-ligazoi. Sluchai gomogennykh molekul. Mol Biol (Mosk) 1980 Sep-Oct;14(5):1023–1038. [PubMed] [Google Scholar]
  14. Mizuuchi K., Mizuuchi M., Gellert M. Cruciform structures in palindromic DNA are favored by DNA supercoiling. J Mol Biol. 1982 Apr 5;156(2):229–243. doi: 10.1016/0022-2836(82)90325-4. [DOI] [PubMed] [Google Scholar]
  15. Record M. T., Jr, Mazur S. J., Melançon P., Roe J. H., Shaner S. L., Unger L. Double helical DNA: conformations, physical properties, and interactions with ligands. Annu Rev Biochem. 1981;50:997–1024. doi: 10.1146/annurev.bi.50.070181.005025. [DOI] [PubMed] [Google Scholar]
  16. Shimada J., Yamakawa H. Statistical mechanics of DNA topoisomers. The helical worm-like chain. J Mol Biol. 1985 Jul 20;184(2):319–329. doi: 10.1016/0022-2836(85)90383-3. [DOI] [PubMed] [Google Scholar]
  17. Shore D., Baldwin R. L. Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol. 1983 Nov 15;170(4):957–981. doi: 10.1016/s0022-2836(83)80198-3. [DOI] [PubMed] [Google Scholar]
  18. Shore D., Langowski J., Baldwin R. L. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4833–4837. doi: 10.1073/pnas.78.8.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  20. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  21. Wang J. C., Davidson N. Cyclization of phage DNAs. Cold Spring Harb Symp Quant Biol. 1968;33:409–415. doi: 10.1101/sqb.1968.033.01.047. [DOI] [PubMed] [Google Scholar]
  22. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  23. Yee T., Inouye M. Two-dimensional S1 nuclease heteroduplex mapping: detection of rearrangements in bacterial genomes. Proc Natl Acad Sci U S A. 1984 May;81(9):2723–2727. doi: 10.1073/pnas.81.9.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zyskind J. W., Deen L. T., Smith D. W. Isolation and mapping of plasmids containing the Salmonella typhimurium origin of DNA replication. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3097–3101. doi: 10.1073/pnas.76.7.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES