Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Nov 25;16(22):10441–10452. doi: 10.1093/nar/16.22.10441

Cloning, molecular characterization and chromosome localization of the inorganic pyrophosphatase (PPA) gene from S. cerevisiae.

L F Kolakowski Jr 1, M Schloesser 1, B S Cooperman 1
PMCID: PMC338916  PMID: 2849749

Abstract

The gene for Saccharomyces cerevisiae inorganic pyrophosphatase, PPA, has been cloned by hybridization of "long" oligonucleotide probes with both cDNA and genomic S. cerevisiae libraries. The nucleotide sequence of 1612 bp from a genomic subclone that includes the entire coding region gives a deduced amino acid sequence that has nine differences (out of a total of 286 residues) from the previously published amino acid sequence that was determined directly. The codon usage in PPA is as expected for a "highly expressed" yeast gene. The upstream region contains a poly dA/dT sequence that might comprise a constitutive promoter. The PPA gene appears to be present in a single copy within the S. cerevisiae genome and has been localized to chromosome II.

Full text

PDF
10441

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennetzen J. L., Hall B. D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. J Biol Chem. 1982 Mar 25;257(6):3018–3025. [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
  4. Blattner F. R., Blechl A. E., Denniston-Thompson K., Faber H. E., Richards J. E., Slightom J. L., Tucker P. W., Smithies O. Cloning human fetal gamma globin and mouse alpha-type globin DNA: preparation and screening of shotgun collections. Science. 1978 Dec 22;202(4374):1279–1284. doi: 10.1126/science.725603. [DOI] [PubMed] [Google Scholar]
  5. Bond M. W., Chiu N. Y., Cooperman B. S. Identification of an arginine important for enzymatic activity within the covalent structure of yeast inorganic pyrophosphatase. Biochemistry. 1980 Jan 8;19(1):94–102. doi: 10.1021/bi00542a015. [DOI] [PubMed] [Google Scholar]
  6. Carle G. F., Olson M. V. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. doi: 10.1073/pnas.82.11.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  8. Cohen S. A., Sterner R., Keim P. S., Heinrikson R. L. Covalent structural analysis of yeast inorganic pyrophosphatase. J Biol Chem. 1978 Feb 10;253(3):889–897. [PubMed] [Google Scholar]
  9. Cooperman B. S. The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol. 1982;87:526–548. doi: 10.1016/s0076-6879(82)87030-4. [DOI] [PubMed] [Google Scholar]
  10. Ermakova S. A., Mansurova S. E., Kalebina T. S., Lobakova E. S., Selyach I. O., Kulaev I. S. Accumulation of pyrophosphate and other energy-rich phosphorous compounds under various conditions of yeast growth. Arch Microbiol. 1981 Feb;128(4):394–397. doi: 10.1007/BF00405919. [DOI] [PubMed] [Google Scholar]
  11. Gallwitz D., Perrin F., Seidel R. The actin gene in yeast Saccharomyces cerevisiae: 5' and 3' end mapping, flanking and putative regulatory sequences. Nucleic Acids Res. 1981 Dec 11;9(23):6339–6350. doi: 10.1093/nar/9.23.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gonzalez M. A., Cooperman B. S. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase. Biochemistry. 1986 Nov 4;25(22):7179–7185. doi: 10.1021/bi00370a062. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez M. A., Webb M. R., Welsh K. M., Cooperman B. S. Evidence that catalysis by yeast inorganic pyrophosphatase proceeds by direct phosphoryl transfer to water and not via a phosphoryl enzyme intermediate. Biochemistry. 1984 Feb 28;23(5):797–801. doi: 10.1021/bi00300a002. [DOI] [PubMed] [Google Scholar]
  14. Haltiner M., Kempe T., Tjian R. A novel strategy for constructing clustered point mutations. Nucleic Acids Res. 1985 Feb 11;13(3):1015–1025. doi: 10.1093/nar/13.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamm D. J., Cooperman B. S. Nuclear magnetic resonance studies of inorganic phosphate binding to yeast inorganic pyrophosphatase. Biochemistry. 1978 Sep 19;17(19):4033–4040. doi: 10.1021/bi00612a025. [DOI] [PubMed] [Google Scholar]
  16. Heinonen J., Kukko E. Partial inhibition of DNA synthesis gives rise to increase in the level of inorganic pyrophosphatase in the growing cells of Escherichia coli. Chem Biol Interact. 1977 Apr;17(1):113–116. doi: 10.1016/0009-2797(77)90076-x. [DOI] [PubMed] [Google Scholar]
  17. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  18. Huet J., Cottrelle P., Cool M., Vignais M. L., Thiele D., Marck C., Buhler J. M., Sentenac A., Fromageot P. A general upstream binding factor for genes of the yeast translational apparatus. EMBO J. 1985 Dec 16;4(13A):3539–3547. doi: 10.1002/j.1460-2075.1985.tb04114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jaye M., de la Salle H., Schamber F., Balland A., Kohli V., Findeli A., Tolstoshev P., Lecocq J. P. Isolation of a human anti-haemophilic factor IX cDNA clone using a unique 52-base synthetic oligonucleotide probe deduced from the amino acid sequence of bovine factor IX. Nucleic Acids Res. 1983 Apr 25;11(8):2325–2335. doi: 10.1093/nar/11.8.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knight W. B., Dunaway-Mariano D., Ransom S. C., Villafranca J. J. Investigations of the metal ion-binding sites of yeast inorganic pyrophosphatase. J Biol Chem. 1984 Mar 10;259(5):2886–2895. [PubMed] [Google Scholar]
  21. Knight W. B., Fitts S. W., Dunaway-Mariano D. Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase. Biochemistry. 1981 Jul 7;20(14):4079–4086. doi: 10.1021/bi00517a021. [DOI] [PubMed] [Google Scholar]
  22. Kukko E., Sundell L. Regulation of inorganic pyrophosphatase in Escherichia coli: relationship between the synthesis of inorganic pyrophosphatase and the thymidine triphosphate pool. Folia Microbiol (Praha) 1983;28(3):145–148. doi: 10.1007/BF02884076. [DOI] [PubMed] [Google Scholar]
  23. McNeil J. B., Smith M. Transcription initiation of the Saccharomyces cerevisiae iso-1-cytochrome c gene. Multiple, independent T-A-T-A sequences. J Mol Biol. 1986 Feb 5;187(3):363–378. doi: 10.1016/0022-2836(86)90439-0. [DOI] [PubMed] [Google Scholar]
  24. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae, edition 9. Microbiol Rev. 1985 Sep;49(3):181–213. doi: 10.1128/mr.49.3.181-213.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Proudfoot N. J., Cheng C. C., Brownlee G. G. Sequence analysis of eukaryotic mRNA. Prog Nucleic Acid Res Mol Biol. 1976;19:123–134. doi: 10.1016/s0079-6603(08)60914-9. [DOI] [PubMed] [Google Scholar]
  26. Rudolph H., Hinnen A. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1340–1344. doi: 10.1073/pnas.84.5.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith D. H., Brutlag D., Friedland P., Kedes L. H. BIONET: national computer resource for molecular biology. Nucleic Acids Res. 1986 Jan 10;14(1):17–20. doi: 10.1093/nar/14.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith M. M., Murray K. Yeast H3 and H4 histone messenger RNAs are transcribed from two non-allelic gene sets. J Mol Biol. 1983 Sep 25;169(3):641–661. doi: 10.1016/s0022-2836(83)80163-6. [DOI] [PubMed] [Google Scholar]
  30. Springs B., Welsh K. M., Cooperman B. S. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry. 1981 Oct 27;20(22):6384–6391. doi: 10.1021/bi00525a016. [DOI] [PubMed] [Google Scholar]
  31. Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986 Jan 10;14(1):217–231. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Struhl K., Chen W., Hill D. E., Hope I. A., Oettinger M. A. Constitutive and coordinately regulated transcription of yeast genes: promoter elements, positive and negative regulatory sites, and DNA binding proteins. Cold Spring Harb Symp Quant Biol. 1985;50:489–503. doi: 10.1101/sqb.1985.050.01.061. [DOI] [PubMed] [Google Scholar]
  33. Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8419–8423. doi: 10.1073/pnas.82.24.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ullrich A., Berman C. H., Dull T. J., Gray A., Lee J. M. Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. EMBO J. 1984 Feb;3(2):361–364. doi: 10.1002/j.1460-2075.1984.tb01812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  36. Welsh K. M., Armitage I. M., Cooperman B. S. Yeast inorganic pyrophosphatase. Functional and 113Cd2+ and 31P nuclear magnetic resonance studies of the Cd2+-enzyme. Biochemistry. 1983 Mar 1;22(5):1046–1054. doi: 10.1021/bi00274a008. [DOI] [PubMed] [Google Scholar]
  37. Welsh K. M., Cooperman B. S. Yeast inorganic pyrophosphatase. A model for active-site structure based on 113Cd2+ and 31P NMR studies. Biochemistry. 1984 Oct 9;23(21):4947–4955. doi: 10.1021/bi00316a019. [DOI] [PubMed] [Google Scholar]
  38. Welsh K. M., Jacobyansky A., Springs B., Cooperman B. S. Catalytic specificity of yeast inorganic pyrophosphatase for magnesium ion as cofactor. An analysis of divalent metal ion and solvent isotope effects on enzyme function. Biochemistry. 1983 Apr 26;22(9):2243–2248. doi: 10.1021/bi00278a029. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES