Skip to main content
Genetics and Molecular Biology logoLink to Genetics and Molecular Biology
. 2012 May 10;35(2):365–387. doi: 10.1590/S1415-47572012005000027

Uniparental genetic markers in South Amerindians

Rafael Bisso-Machado 1, Maria Cátira Bortolini 1, Francisco Mauro Salzano 1,
PMCID: PMC3389523  PMID: 22888284

Abstract

A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.

Keywords: genetics, language and geography, mitochondrial DNA, Native Americans, South Amerindians, Y-chromosome

Introduction

Native Americans have been the subject of a large number of population genetic studies because of particular characteristics: (a) there are groups among them that until recently had a hunter-gatherer way of living with only incipient agriculture, typical of our ancestors, (b) they show considerable interpopulation but low intrapopulation variability, and (c) since until recently they could not write there is no written record of their history, except for those of non-Amerindian colonizers. Biological studies can therefore be used to investigate their past.

The first genetic studies examined the variability in blood groups and proteins and have been summarized in Salzano and Callegari-Jacques (1988) and Crawford (1998). The advent of modern molecular biology, which allows direct, detailed DNA analysis, has opened new possibilities for investigating these populations.

DNA studies can basically be divided into two groups: those involving autosomal markers and those involving uniparental (Y-chromosome, mitochondrial DNA) markers. The latter are important because they can provide a clear-cut pattern of historical events that is not clouded by recombination factors. For Amerindians, the number of reviews that have dealt with these markers is not large or comprehensive. For the Y-chromosome, Bortolini et al. (2003) considered 438 individuals from 23 Southern and one Northern Amerindian populations who were screened for eight single nucleotide polymorphisms (SNPs) and six short tandem repeat/microsatellite (STR) loci, and Zegura et al. (2004) studied 63 binary polymorphisms and 10 STR regions in 2,344 persons from 15 Northern and three Southern Amerindian groups. Only a few recent studies have used all known SNPs necessary to identify the major Native American Y-haplogroups and their sublineages in Amerindian populations (Geppert et al., 2011; Jota et al., 2011; Bisso-Machado et al., 2011).

The most recent mtDNA reviews were published four years ago and involved sequence variability in the hypervariable region 1 (Hunley et al., 2007; Lewis Jr et al., 2007). Schurr and Sherry (2004), on the other hand, associated data from Y-chromosome markers with mitochondrial DNA (mtDNA) results, providing a good picture of the information available at the time. No general review considering both data sets has been published since then.

This review provides a detailed, comprehensive survey of Y-chromosome haplogroup frequency variation in 68 populations involving 1,814 individuals. In addition, specific information on Y-STR markers for 29 populations and 590 subjects is given. The haplogroup mtDNA data included 108 populations involving a total of 6,697 persons. Geographic and linguistic factors that may have influenced this variation were carefully considered, leading to a global, overview of the genetic pattern associated with these markers in South Amerindians. Information on mtDNA sequencing studies is also supplied.

Materials and Methods

The data used in this review were obtained from 17 primary surveys of the Y-chromosome and 66 primary surveys of mtDNA. These studies were retrieved through PubMed and by searching the reference lists of the corresponding papers. Haplogroup frequencies were obtained by direct counting. Intra- and inter-populational diversity was calculated with AMOVA (Weir and Cockerham, 1984; Excoffier et al., 1992; Weir, 1996) using Arlequin 3.5.1.2 software (Excoffier and Lischer, 2010). AMOVA was also used to estimate the level of differentiation between and within 17 pre-defined language and 7 geographical categories, respectively. The distribution patterns of the mtDNA haplogroup frequencies were established by generating isoline maps using IDRISI 16.0 software (IDRISI Taiga) (Eastman, 2006). Spearman’s correlation coefficients were calculated with PASW Statistics 18 software. Average heterozygosity (ah) was calculated with Arlequin 3.5.1.2 software.

Results and Discussion

Table 1 gives the distribution of the Q and non-Q-chromosomes (defined by a set of SNPs), as well as linguistic and geographical information for the samples considered. The samples were distributed from latitude 11° North to 45° South and longitude 46° to 76° West, with the individuals involved speaking 23 languages. Sample sizes varied widely from 1 to 151 individuals. Twenty-two of the studies involved less than 10 persons. Unfortunately, there is no standardization on the number of SNPs studied and in most cases only the M242 and M3 markers (which define the Asian/Native American paragroup Q* and its autochthonous Native American sublineage Q1a3a*, respectively; Pena et al., 1995; Bortolini et al., 2003; Seielstad et al., 2003) were investigated. This fact precludes a complete, precise view of the distribution of Q1a3a sublineages and other Q clade chromosomes in South America. For this reason, the information in Table 1 was limited to the frequencies of the Q and non-Q-lineages only. Note that non-Q-chromosomes (which, for the reasons given above, could not be identified in sublineages) were identified in ∼50% of the tribal groups. For some of these populations admixture with non-Indians is known and could be the source of these non-Q chromosomes (for example, Mapuche and Guarani; Marrero et al., 2007; Bailliet et al., 2009; Blanco-Verea et al., 2010). Overall, the numbers presented in Table 1 indicate a higher presence of non-Q lineages in southern populations than in those of the northern/Amazonian region, probably because of greater admixture with non-Indians in the former than in the latter. However, for some isolated groups such as the Yanomámi, it is unlikely that admixture explains the findings. In these cases other causes are more probable, such as the presence of unknown autochthonous lineages and/or known Q lineages whose defining markers were not tested.

Table 1.

The distribution of Q and non-Q lineages and linguistic and geographical information for the samples considered.

Populations (n)1 Haplogroup (%)
Language2 Geographical coordinates References
Q lineages/Amerindian origin Non-Q lineages
Wayuu (19) 69 31 Arawakan 11° N; 73° W Bortolini et al. (2003)
Kogi (17) 100 Chibchan 11° N; 74° W Rojas et al. (2010)
Barira (12) 100 Chibchan 10° 44′ N; 71° 23′ W Bortolini et al. (2003)
Arsario (Wiwa) (6) 100 Chibchan 10° 25′ N; 73° 05′ W Rojas et al. (2010)
Arhuaco (Ijka) (19) 100 Chibchan 9° 04′ N; 73° 59′ W Rojas et al. (2010)
Warao (12) 100 Warao 9° N; 61° W Bortolini et al. (2003)
Yukpa (12) 100 Carib 8° 40′ N; 72° 41′ W Bortolini et al. (2003)
Zenu (52) 79 21 Spanish3 8° 30′ N; 76° W Bortolini et al. (2003); Rojas et al. (2010)
Embera (13) 92 8 Choco 7° N; 76° 30′ W Rojas et al. (2010)
Makiritare (25) 68 32 Carib 5° 33′ N; 65° 33′ W Lell et al. (2002)
Kali’na (21) 81 19 Carib 5° 31′ N; 53° 47′ W Mazières et al. (2008)
Waunana (29) 100 Choco 4° 50′ N; 77° W Rojas et al. (2010)
Palikur (35) 94 6 Arawakan 4° N; 51° 45′ W Mazières et al. (2008)
Macushi (4) 100 Carib 4° N; 60° 50′ W Lell et al. (2002)
Piaroa (6) 100 Salivan 3° 57′ N; 66° 22′ W Lell et al. (2002)
Wapishana (2) 50 50 Arawakan 3° 07′ N; 60° 03′ W Lell et al. (2002)
Emerillon (9) 100 Tupi 3° N; 53° W Mazières et al. (2008)
Yanomámi (39) 38 62 Yanomam 2° 50′ N; 54° W Rodriguez-Delfin et al. (1997); Lell et al. (2002)
Tiryió (4) 100 Carib 2° N; 56° W Bortolini et al. (2003)
Apalaí (57) 98 2 Carib 1° 20′ N; 54° 40′ W Rodriguez-Delfin et al. (1997); Bortolini et al. (2003)
Wayampi (62) 100 Tupi 1° N; 53° W Rodriguez-Delfin et al. (1997); Bortolini et al. (2003); Mazières et al. (2008)
Yagua (7) 100 Peba-Yaguan 0° 51′ N; 72° 27′ W Bortolini et al. (2003)
Ingano (108) 80 20 Quechuan 0° 50′ N; 77° W Bortolini et al. (2003); Rojas et al. (2010)
Wai-Wai (9) 100 Carib 0° 40′ S; 58° W Bisso-Machado et al. (2011)
Urubu-Kaapor (16) 100 Tupi 2°–3° S; 46°–47° W Bortolini et al. (2003)
Huitoto (4) 75 25 Witotoan 2° 14′ S; 72° 19′ W Bortolini et al. (2003)
Arara (15) 100 Carib 3° 30′–4° 20′ S; 53° 0′–54° 10′ W Rodriguez-Delfin et al. (1997); Bianchi et al. (1998); Bisso-Machado et al. (2011)
Asurini (4) 100 Tupi 3° 35′–4° 12′ S; 49° 40′–52° 26′ W Bortolini et al. (2003)
Ticuna (59) 93 7 Ticuna 4° S; 69° 58′ W; Bortolini et al. (2003); Rojas et al. (2010)
Parakanã (20) 100 Tupi 5° 22′ S; 51° 17′ W Bortolini et al. (2003)
Xikrin (14) 100 Macro-Ge 5° 55′ S; 51° W Bortolini et al. (2003); Bisso-Machado et al. (2011)
Suruí (24) 96 4 Tupi 5° 58′–10° 50′ S; 48° 39′–61° 10′ W Underhill et al. (1996); Bisso-Machado et al. (2011)
Araweté (4) 100 Tupi 5° 9′ S; 52° 22′ W Bisso-Machado et al. (2011)
Munduruku (1) 100 Tupi 6° 23′ S; 59° 9′ W Bisso-Machado et al. (2011)
Jamamadi (3) 100 Arauan 7° 15′ S; 66° 41′ W Bisso-Machado et al. (2011)
Gorotire (19) 100 Macro-Ge 7° 44′ S; 51° 10′ W Bortolini et al. (2003); Bisso-Machado et al. (2011)
Krahó (15) 93 7 Macro-Ge 8° S; 47° 15′ W Lell et al. (2002); Bortolini et al. (2003)
Kuben-Kran-Kegn (9) 100 Macro-Ge 8° 10′ S; 52° 8′ W Bisso-Machado et al. (2011)
Tenharim (1) 100 Tupi 8° 20′ S; 62° W Bisso-Machado et al. (2011)
Mekranoti (9) 78 22 Macro-Ge 8° 40′ S; 54° W Bortolini et al. (2003)
Kayapó (10) 100 Macro-Ge 9° S; 53° W Rodriguez-Delfin et al. (1997)
Karitiana (18) 100 Tupi 9° 30′ S; 64° 15′ W Underhill et al. (1996); Bisso-Machado et al. (2011)
Cinta-Larga (15) 100 Tupi 9° 50′–12° 30′ S; 59° 10′–60° 50′ W Bortolini et al. (2003)
Gavião (7) 100 Tupi 10° 10′ S; 61° 8′ W Bisso-Machado et al. (2011)
Karipuna (1) 100 Tupi 10° 14′ S; 64° 13′ W Bisso-Machado et al. (2011)
Zoró (6) 100 Tupi 10° 20′ S; 60° 20′ W Bisso-Machado et al. (2011)
Matsiguenga (28) 91 9 Arawakan 10° 47′–12° 51′ S; 73° 17′ -70° 44′ W Mazières et al. (2008)
Pacaás Novos (Wari) (29) 100 Chapacura-Wanham 11° 8′ S; 65° W Bortolini et al. (2003)
Panoa (5) 100 Pano 12° 55′ S; 65° 12′ W Lell et al. (2002)
Xavante (15) 100 Macro-Ge 14° S; 52° 30′ W Bisso-Machado et al. (2011)
Quechua (44) 73 27 Quechuan 14° 30′ S; 69° W Gayà-Vidal et al. (2011)
Aymara (59) 97 3 Aymaran 17° 68′ S; 69° 16′ W Gayà-Vidal et al. (2011)
Ayoreo (9) 78 22 Zamucoan 19° S; 60° 30′ W Bailliet et al. (2009)
Wichí (Mataco) (151) 48 52 Mataco-Guaicuru 22° 28′ S; 62° 70′ W Demarchi and Mitchell (2004); Bailliet et al. (2009)
Lengua (36) 97 3 Mascoian 22° 45′ S; 58° 5′ W Bailliet et al. (2009); Bisso-Machado et al. (2011)
Chorote (9) 89 21 Mataco-Guaicuru 22° 90′ S; 65° 40′ W; Bailliet et al. (2009)
Aché (54) 98 2 Tupi 23° 30′–24° 10′ S; 55° 50′–56° 30′ W Bortolini et al. (2003)
Guarani (78) 77 23 Tupi 23° 6′ S; 55° 12′ W Bortolini et al. (2003); Marrero et al.(2007)
Pilagá 47 53 Mataco-Guaicuru 24° S; 59° W Demarchi and Mitchell (2004)
Colla (63) 35 65 Quechuan3 24° 10′–24° 43′ S; 65° 17′–65° 52′ W Blanco-Verea et al. (2010); Toscanini et al. (2011)
Toba (89) 88 12 Mataco-Guaicuru 26° S; 58° W Demarchi and Mitchell (2004); Bailliet et al. (2009); Toscanini et al. (2011)
Kaingang (59) 69 31 Macro-Ge 28° S; 51° 20′ W Bortolini et al. (2003); Marrero et al. (2007); Bisso-Machado et al. (2011)
Diaguita (24) 37 63 Quechuan4 28° 20′ S; 67° 43′ W Blanco-Verea et al. (2010)
Mocoví (40) 60 40 Mataco-Guaicuru 29° 51′ S; 59° 56′ W Bailliet et al. (2009)
Pehuenche (18) 83 17 Araucanian 37° 43′ S; 71° 16′ W Bailliet et al. (2009)
Mapuche (105) 36 64 Araucanian 39° 10′–41° 20′ S; 68° 37′–70° 22′ W Bailliet et al. (2009); Blanco-Verea et al. (2010)
Huilliche (26) 50 50 Araucanian 41° 16′ S; 73° W Bailliet et al. (2009)
Tehuelche (20) 65 35 Chon 45° S; 71° W Bailliet et al. (2009)
1

Arranged according to latitude.

2

Classification according to Lewis (2009).

3

Original language is extinct.

4

The Diaguita spoke originally Kakán, but this language became extinct and was substituted by Quechua.

Despite the great variation in the number of Y-SNPs used in these studies, Figure 1 illustrates some of the trends that were observed: The autochthonous Native American Q1a3a* is almost always the most prevalent, whereas its sublineages (Q1a3a1, Q1a3a2, Q1a3a3 and Q1a3a4) seem to have more restricted geographical distributions. The second most prevalent, Q1a3*, appears to occur equally in all regions, suggesting its presence among the first settlers of South America. The other known Q clade chromosomes (Q1*, Q1a*, Q1a1, Q1a2, Q1a4, Q1a5, Q1a6 and Q1b) have not yet been identified in South America. Only one non-Q-chromosome (C3*) of probable native origin has been described in northwest South Amerindian populations (Figure 1; Geppert et al., 2011).

Figure 1.

Figure 1

Y-chromosome phylogenetic tree considering only the Q derived lineages. Note: The letters and numbers in the branches indicate the name of the loci where the mutations occurred, leading to the haplogroup classification. The data for this tree were compiled from the references in Table 1, plus Santos et al. (1995), Underhill et al. (1997, 2001), Karafet et al. (1997, 1999, 2008), Carvalho-Silva et al. (1999), Vallinoto et al. (1999), Bortolini et al. (2002), The Y-Chromosome Consortium (2002) and Geppert et al. (2011).

The nature of some evolutionary and demographic scenarios, mediated by men, in native American populations has also been evaluated by using Y microsatellite markers (Y-STRs), which have a much faster evolutionary rate than SNPs. Y-STRs allow the retrieval of population and chromosome evolutionary histories. For example, STR data have been used to estimate that the mutations that gave rise to the Q1a3a1 and Q1a3a4 sublineages occurred 7,972 ± 2,916 and 5,280 ± 1,330 years ago, probably in northwest South America and the Andean region, respectively (Bortolini et al., 2003; Jota et al., 2011).

Table 2 shows the STR allele frequencies observed in 29 South Amerindian populations, based only on Q clade chromosomes. In this compilation, we considered only studies containing information on the allele frequencies for each population individually. There was considerable variation in the number of samples tested in each study, the number of tribes, and the number of individuals per tribe. Depending on the locus considered, the number of alleles observed ranged from one to eight, with some of them appearing in only one study while others were present in almost all populations. Based on the most prevalent alleles per locus we reconstructed a probable haplotype of the ancient Native American Q-clade chromosome (ANAQC) as: 13(DYS19)-12(DYS388)-14(DYS389I)-31(DYS389II)-2 4(DYS390)-10(DYS391)-14(DYS392)-13(DYS393)-14(DYS437)-11(DYS438)-12(DYS439)-20(DYS448)-15(D YS456)-16(DYS458)-22(DYS635). Using this information and additional data for these loci (except DYS388) reported in the Y Chromosome Haplotype Reference Database we found no matches in 36,448 haplotypes (245 populations). Although we found no complete identity with our estimated ANAQC, three one-step neighbor haplotypes were encountered, two in individuals with an admixed ancestry living in Latin American countries and one in a Native American individual (Kaqchiquel).

Table 2(a).

Y-Q-chromosome STR studies in distinct South Amerindian samples in which allele frequencies can be assessed (Part A).

Ref. (n)
STR (allele) Aché (48)2 Apalaí (9)1 Arara (8)1 Aymara (57)9 Ayoreo (2)7 Barira (12)2 Diaguita (9)8 Guarani (47)4, 5 Ingano (8)2 Kaingang (17)5 Kayapó (10)1 Colla (22)6, 8 Lengua (6)7 Mapuche (24)6, 8 Mekranoti (5)2
DYS19 (12) 0.020 0.250
DYS19 (13) 1.000 0.820 0.920 1.000 0.790 0.620 0.300 0.910 0.500 0.830 0.600
DYS19 (14) 0.160 1.000 0.080 0.190 0.130 0.300 0.090 0.330 0.040 0.400
DYS19 (15) 0.020 0.350 0.170 0.130
DYS19 (16) 0.050
DYS19 total
DYS388 (12) 1.000 1.000 0.750 1.000
DYS388 (13) 0.120
DYS388 (14) 0.130
DYS388 (17)
DYS388 total
DYS389I (12) 0.020 0.280 0.180 0.040 0.160 0.040
DYS389I (13) 0.470 0.500 0.220 0.020 0.820 0.410 0.500 0.750
DYS389I (14) 0.510 0.500 0.780 0.550 0.550 0.170 0.210
DYS389I (15) 0.150 0.170
DYS389I total
DYS389II (17)
DYS389II (18)
DYS389II (19)
DYS389II (26) 0.060
DYS389II (27) 0.160
DYS389II (28) 0.020 0.020 0.120
DYS389II (29) 0.090 0.500 0.150 0.290 0.090 0.500 0.290
DYS389II (30) 0.370 0.500 0.440 0.130 0.470 0.180 0.170 0.420
DYS389II (31) 0.450 0.560 0.620 0.060 0.500 0.250
DYS389II (32) 0.070 0.080 0.090 0.170 0.040
DYS389II (33) 0.140
DYS389II (34)
DYS389II total
DYS390 (20)
DYS390 (21) 0.230 0.120 0.070 0.060 0.100 0.040
DYS390 (22) 0.110 0.130 0.040
DYS390 (23) 1.000 0.330 0.880 0.560 0.080 0.330 0.080 0.250 0.100 0.640 0.330 0.420 0.400
DYS390 (24) 0.330 0.250 1.000 0.920 0.450 0.680 0.370 0.940 0.700 0.180 0.670 0.330 0.600
DYS390 (25) 0.120 0.220 0.090 0.250 0.100 0.210
DYS390 (26) 0.020 0.130 0.140
DYS390 (27)
DYS390 total
DYS391 (9) 0.020 0.210
DYS391 (10) 1.000 0.820 1.000 1.000 0.890 0.210 0.860 0.820 1.000 0.750 1.000
DYS391 (11) 0.140 0.110 0.790 0.140 0.180 0.040
DYS391 (12) 0.020
DYS391 total
DYS392 (11) 0.060
DYS392 (12) 0.140
DYS392 (13) 1.000 1.000 0.920 0.070 0.120 0.350 0.700 0.050 0.170 1.000
DYS392 (14) 1.000 0.470 0.500 0.080 0.450 0.720 0.880 0.530 0.300 0.360 0.830 0.710
DYS392 (15) 0.040 0.500 0.330 0.210 0.060 0.090 0.170 0.120
DYS392 (16) 0.470 0.220 0.360
DYS392 (17) 0.020
DYS392 (18)
DYS392 total
DYS393 (11) 0.480
DYS393 (12) 0.220 0.120 0.080 0.090 0.120 0.060 0.400 0.090 0.400
DYS393 (13) 1.000 0.780 0.880 0.440 1.000 0.670 0.340 0.760 0.590 0.600 0.550 1.000 1.000 0.600
DYS393 (14) 0.560 0.920 0.330 0.090 0.120 0.350 0.360
DYS393 (15)
DYS393 (16)
DYS393 total
DYS437 (8)
DYS437 (9)
DYS437 (11) 0.040
DYS437 (14) 1.000 1.000 0.930 0.590 1.000 0.920
DYS437 (15) 0.070 0.410 0.040
DYS437 total
DYS438 (9)
DYS438 (10) 0.050 0.220 0.040
DYS438 (11) 0.930 0.670 0.860 0.590 1.000 0.920
DYS438 (12) 0.020 0.110 0.140 0.410
DYS438 (16) 0.040
DYS438 total
DYS439 (9) 0.050
DYS439 (10) 0.060 0.130
DYS439 (11) 0.160 0.220 0.070 0.230 0.050 0.220
DYS439 (12) 0.240 0.450 0.640 0.590 0.360 0.390
DYS439 (13) 0.370 0.330 0.290 0.060 0.270 0.260
DYS439 (14) 0.230 0.060 0.270
DYS439 total 0.200
DYS448 (18)
DYS448 (19) 0.110
DYS448 (20) 0.770 0.800
DYS448 (21) 0.120
DYS448 (22)
DYS448 total
DYS456 (11) 0.020
DYS456 (13) 0.050
DYS456 (14) 0.020
DYS456 (15) 0.800 0.900
DYS456 (16) 0.090 0.100
DYS456 (17) 0.020
DYS456 total
DYS458 (13) 0.050 0.100
DYS458 (15) 0.030
DYS458 (16) 0.490 0.700
DYS458 (17) 0.250 0.200
DYS458 (18) 0.140
DYS458 (19) 0.040
DYS458 total
DYS635 (22) 0.820 0.700
DYS635 (23) 0.160 0.300
DYS635 (24)
DYS635 (26) 0.020
DYS635 total

Table 3 shows the results of the molecular analysis of variance for populations structured by language or geography based on the data in Table 2. The estimates were calculated for each STR locus because testing heterogeneity prevented haplotype identification. As expected, most of the diversity was attributable to intrapopulation variation, with one exception (DYS437) that was explained by the fixation of allele 14 in 40% of the populations, whereas only allele 8 was found in the Wichí. In contrast, significant variation among subdivisions was detected for only six loci (DYS398I, DYS391, DYS392, DYS393, DYS437 and DYS456) and in five out of these six it was attributable to geography. There was also considerable inter-population/within subdivision variability (significant in 28 of 30 evaluations), with the average percentage being 16% for geography and 21% for language.

Table 3.

Analysis of molecular variance of the distinct alleles of the Y-Q STRs in relation to the language and geography of the populations tested.

STR loci (structured by) Among subdivisions Among populations within subdivisions Within populations
DYS19 (Language)1 0 0.311* 0.689*
DYS19 (Geography)2 0 0.332* 0.668*
DYS388 (Language)1 0.045 0.317* 0.638*
DYS388 (Geography)2 0.091 0.240* 0.669*
DYS389I (Language)1 0.227* 0.030 0.743*
DYS389I (Geography)2 0.116 0.148* 0.736*
DYS389II (Language)1 0.036 0.077* 0.887*
DYS389II (Geography)2 0 0.125* 0.875*
DYS390 (Language)1 0.008 0.326* 0.666*
DYS390 (Geography)2 0 0.359* 0.642*
DYS391 (Language)1 0 0.385* 0.615*
DYS391 (Geography)2 0.253* 0.131* 0.616*
DYS392 (Language)1 0.005 0.319* 0.676*
DYS392 (Geography)2 0.007* 0.262* 0.661*
DYS393 (Language)1 0 0.331* 0.669*
DYS393 (Geography)2 0.177* 0.167* 0.656*
DYS437 (Language)1 0.289 0.273* 0.438*
DYS437 (Geography)2 0.390* 0.213* 0.397*
DYS438 (Language)1 0.048 0.025 0.927*
DYS438 (Geography)2 0.023 0.054* 0.923*
DYS439 (Language)1 0.019 0.054* 0.929*
DYS439 (Geography)2 0.055 0.034* 0.911*
DYS448 (Language)1 0 0.148* 0.852*
DYS448 (Geography)2 0 0.073* 0.927*
DYS456 (Language)1 0 0.078* 0.922*
DYS456 (Geography)2 0.017* 0.044* 0.939*
DYS458 (Language)1 0 0.144* 0.856*
DYS458 (Geography)2 0.043 0.069* 0.888*
DYS635 (Language)1 0 0.278* 0.722*
DYS635 (Geography)2 0 0.128* 0.872*
1

Language: Tupi: Aché, Guarani, Parakanã, Wayampi; Carib: Apalaí, Arara, Yukpa; Macro-Ge: Kaingang, Kayapó, Mekranoti; Quechua: Diaguita, Quechua, Ingano; Mataco-Guaicuru: Mocoví, Toba, Wichí, Pilagá; Isolated languages and others with only one population were included as a sixth group.

2

Geography: Amazonia/Central Brazilian Plateau: Apalaí, Arara, Kayapó, Mekranoti, Pacaás Novos, Parakanã, Ticuna, Warao, Wayampi, Yanomámi; Southern Brazil: Guarani and Kaingang; Chaco: Ache, Ayoreo, Lengua, Mocoví, Pilagá, Toba, Wichí; Andes: Aymara, Barira, Diaguita, Kolla, Quechua, Wayuu, Yukpa, Zenu.

*

Significant values (p = 0.05). Negative values were adjusted to zero.

Table 4 summarizes the information on sequencing studies of mitochondrial DNA. The mtDNA genome of representative individuals from 35 populations has been entirely sequenced, as reported in six publications (Ingman et al., 2000; Kivisild et al., 2006; Tamm et al., 2007; Fagundes et al., 2008; Perego et al., 2009, 2010). However, the analyses performed did not consider the within South Amerindian relationships and were mostly concerned with interethnic or interhaplogroup comparisons. Based on 86 complete Amerindian genomes, Fagundes et al. (2008) concluded that the prehistoric colonization of the Americas involved a single founding population, with an initial differentiation from Asia occurring in Beringia that ended around 19,000–23,000 years ago, with a moderate bottleneck. Expansion into the New World would have occurred about 18,000 years ago. An extensive 5.76 kb analysis by Dornelles et al. (2005) established that haplogroup X is not present in extant South American Indians.

Table 4.

Mitochondrial DNA sequencing studies in South Amerindian populations.

Population HVS-I HVS-II Complete mt genome References
Aché X X X Schmitt et al. (2004); Dornelles et al. (2005); Fagundes et al. (2008); Yang et al. (2010)
Ancash X X Lewis Jr et al. (2005); Perego et al. (2009)
Andean X García-Bour et al. (2004)1
Apalaí X Lobato-da-Silva et al. (2001); Mazières et al. (2008)
Arara X X Santos et al. (1996); Lobato-da-Silva et al. (2001); Ribeiro-dos-Santos et al. (2001); Silva Jr et al. (2002, 2003)2; Fagundes et al. (2008)
Araweté X Lobato-da-Silva et al. (2001)
Arequipa X X Fuselli et al. (2003); Perego et al. (2009)
Arhuaco X X X Melton et al. (2007); Tamm et al. (2007); Yang et al. (2010)
Arsario X X Melton et al. (2007); Tamm et al. (2007)
Asurini X X Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Auca X Kivisild et al. (2006)
Awa-Guajá X Santos et al. (1996); Lobato-da-Silva et al. (2001)
Awa-Juriti X Lobato-da-Silva et al. (2001)
Aymara X X Corella et al. (2007); Lewis Jr et al. (2007); Yang et al. (2010); Barbieri et al. (2011)
Ayoreo X X Dornelles et al. (2004, 2005)
Catamarca X Tamm et al. (2007)
Cayapa X X X Rickards et al. (1999); Tamm et al. (2007)
Chimane X Corella et al. (2007)
Chilean North Coast X Moraga et al. (2005)1
Cinta Larga X X Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Coreguaje X Tamm et al. (2007)
Coya X X Alvarez-Iglesias et al. (2007)
Cubeo X X Torres et al. (2006)
Curripaco X X Torres et al. (2006)
Desano X X Torres et al. (2006)
Diaguita X Perego et al. (2010)
Embera X X X Torres et al. (2006); Tamm et al. (2007)
Emerillon X Mazières et al. (2008)
Gavião X X Ward et al. (1996); Fagundes et al. (2008)
Gorotire X X Dornelles et al. (2005)
Guahibo X X Vona et al. (2005); Torres et al. (2006)
Guarani X X X Ingman et al. (2000); Silva Jr et al. (2002, 2003)2; Dornelles et al. (2005); Kivisild et al. (2006); Marrero et al. (2007); Fagundes et al. (2008); Sala et al. (2010); Yang et al. (2010)
Huilliche X X Yang et al. (2010)
Huitoto X X Monsalve et al. (1994); Torres et al. (2006)
Içana River Indians X X Dornelles et al. (2005)
Ignaciano X Bert et al. (2004)
Inga X X Torres et al. (2006); Yang et al. (2010)
Jaqaru X Lewis Jr et al. (2007)
Jamamadi X Lobato-da-Silva et al. (2001)
Jebero X X Monsalve et al. (1994); Torres et al. (2006)
Kaingang X X Dornelles et al. (2005); Marrero et al. (2007); Yang et al. (2010)
Kali’na X Mazières et al. (2008)
Karitiana X Lobato-da-Silva et al. (2001);
Katuena X X Santos et al. (1996); Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2; Fagundes et al. (2008)
Kayapó X Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2
Kawéskar X García-Bour et al. (2004)1
Kogi X X X Melton et al. (2007); Tamm et al. (2007); Yang et al. (2010)
Kolla X Perego et al. (2010)
Krahô X X Dornelles et al. (2005)
Kikretun X X Santos et al. (1996); Fagundes et al. (2008)
Kubenkokre X X Santos et al. (1996); Fagundes et al. (2008)
Kuben-Kran-Kegn X X Dornelles et al. (2005)
Lengua X X Dornelles et al. (2005)
Mapuche X X Ginther et al. (1993); Moraga et al. (2000); Dornelles et al. (2005)
Mekranoti X X Dornelles et al. (2005)
Mocovi X Tamm et al. (2007)
Movima X Bert et al. (2004); Melton et al. (2007)
Munduruku X Lobato-da-Silva et al. (2001);
Mura X X Dornelles et al. (2005)
Ocaina X X Monsalve et al. (1994); Torres et al. (2006)
Pacaás Novos X X Dornelles et al. (2005)
Paez X X Torres et al. (2006)
Palikur X Lobato-da-Silva et al. (2001); Mazières et al. (2008)
Parakanã X X Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Pehuenche X X Merriwether et al. (1994, 1995); Merriwether and Ferrell (1996); Moraga et al. (1997, 2000); García et al. (2006)
Peruvian Andes X X Shinoda et al. (2006)1; Fehren-Schmitz et al. (2011)1
Peruvian Southern X Fehren-Schmitz et al. (2010)1
Coast
Piapoco X X Torres et al. (2006)
Pilagá X Cabana et al. (2006)
Poturujara X X Santos et al. (1996); Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2; Fagundes et al. (2008)
Puinave X X Torres et al. (2006)
Puno X Lewis Jr et al. (2007)
Quechua X X X Monsalve et al. (1994); Silva Jr et al. (2002, 2003)2; Fuselli et al. (2003); Dornelles et al. (2005); Kivisild et al. (2006); Corella et al. (2007); Lewis Jr et al. (2007); Fagundes et al. (2008); Yang et al. (2010); Barbieri et al. (2011)
Saliva X X Torres et al. (2006)
Salta X Tamm et al. (2007)
Sateré Mawé X X Dornelles et al. (2005)
Selknam X García-Bour et al. (2004)1
Sicán X Shimada et al. (2004)1
Suruí X X Lobato-da-Silva et al. (2001); Fagundes et al. (2008)
Tayacaja X Bert et al. (2004)
Ticuna X X Monsalve et al. (1994); Torres et al. (2006); Rojas et al. (2010); Yang et al. (2010)
Tiriyó X X X Santos et al. (1996); Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2; Dornelles et al. (2005); Fagundes et al. (2008)
Toba X Cabana et al. (2006)
Trinitario X Bert et al. (2004)
Tucuman X Tamm et al. (2007)
Tupe X Lewis Jr et al. (2007)
Txukahamãe X X Dornelles et al. (2005)
Uro X Barbieri et al. (2011)
Urubu Kaapor X X Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Vaupe X Tamm et al. (2007)
Wai-wai X Fagundes et al. (2008)
Wayampi X X X Santos et al. (1996); Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2; Dornelles et al. (2005); Fagundes et al. (2008); Mazières et al. (2008)
Warao X Ingman et al. (2000)
Waunana X Tamm et al. (2007)
Wayuu X X X Torres et al. (2006); Melton et al. (2007); Tamm et al. (2007); Yang et al. (2010)
Wichí X Cabana et al. (2006)
Xavante X X X Ward et al. (1996); Dornelles et al. (2005); Fagundes et al. (2008)
Xikrin X X Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Yagua X X Monsalve et al. (1994); Torres et al. (2006)
Yámana X García-Bour et al. (2004)1
Yanomámi X X X Easton et al. (1996); Santos et al. (1996); Merriwether et al. (2000); Lobato-da-Silva et al. (2001); Silva Jr et al. (2002, 2003)2; Williams et al. (2002); Dornelles et al. (2005); Fagundes et al. (2008)
Yungay X Lewis Jr et al. (2007)
Yuracare X Bert et al. (2004)
Zenu X X Torres et al. (2006)
Zoró X X Ward et al. (1996); Fagundes et al. (2008)
1

Ancient DNA.

2

Sequencing included almost half of the genome (sites 7,148–15,976).

The most extensive set of data involves the highly variable segment 1 (HVS-I) that has been studied in 92 populations and reported in 30 papers; surveys that have included the HVS-II region are much less common (10 articles) (Table 4). For HVS-I, Merriwether et al. (2000) provided an excellent example of how intrapopulation variability in the Yanomámi could be interpreted in a historical and demographical context and relating it to other Amerindian and Asian data. They studied 129 Yanomámi sequences from individuals in eight villages and compared their haplotypes with those of other Asian and New World populations, in a total of 482 unique haplotypes. Interestingly, the pairwise inter-population gene flow estimates were lower between some pairs of Yanomámi villages than between them and four other South Amerindian groups.

With regard to intrapopulation variability, as measured by Θk, Fuselli et al. (2003) and Corella et al. (2007) reported extensive variation for 14 and 27 Central and Southern Amerindian populations, respectively (e.g., from 0.659 for the Quechua of Peru to 0.011 for the Xavante of the Brazilian Mato Grosso). Intra- and intergroup nucleotide diversity was calculated by Melton et al. (2007) for 20 of these Amerindian groups, whereas Barbieri et al. (2011) compared the sources of variation among North, Central and South Amerindians in 51 populations; the latter authors observed 3% variation among the three sets, 21% variation among populations within the subcontinent and 76% variation within populations.

To explore the mtDNA data further we compiled the prevalences of haplogroups A–D for 109 populations, in a total of 6,697 individuals distributed between latitude 11° North and 54° South, and longitude 46° to 78° West (Table 5). Sample sizes varied widely, from only one subject tested (Jebero) up to 491 (Yanomámi). The haplogroup frequencies reported in 52 articles also varied widely. The presence of mtDNA genomes of probable non-Amerindian origin was rare in all regions and populations, in contrast to the Y-SNP data (Table 1). Asymmetrical sex-mediated admixture was common during the first centuries of South American colonization, and involved mostly European men and Amerindian/African women. The main consequences of this historical contact was the formation of mestizos and the present-day national societies; the former are characterized by a composite genome, with the majority of Y-chromosomes being of European origin, while their mtDNA derives from Amerindian or African sources (Bortolini et al., 1999; Alves-Silva et al., 2000; Carvalho-Silva et al., 2001; Salzano and Bortolini, 2002). Asymmetrical mating could also explain the introduction of non-Amerindian Y-chromosomes into the tribes, while the autochthonous mtDNA genomes were preserved. However, the admixture dynamics are probably different from those observed in urban groups since they normally involve Amerindian women who live on reservations and men who live near the border of the reservations. In this situation, the children normally remain with their mothers. This phenomenon has been described for Guarani Indians (Marrero et al., 2007), but the data presented here indicate that it could be much more common than previously thought.

Table 5.

Mitochondrial DNA haplogroup and linguistic and geographical information for the samples considered.

Population (n)1 Haplogroups (%)
Language Geographical coordinates References
A B C D Others2
Wayuu (89) 26 28 45 0 1 Arawakan 11° N; 73° W Mesa et al. (2000); Keyeux et al. (2002); Melton et al. (2007)
Kogi (153) 67 0 33 0 0 Chibchan 11° N; 74° W Keyeux et al. (2002); Melton et al. (2007); Rojas et al. (2010)
Arsario (Wiwa) (76) 63 0 37 0 0 Chibchan 10° 25′ N; 73° 05′ W Keyeux et al. (2002); Melton et al. (2007); Rojas et al. (2010)
Chimila (35) 88 0 3 6 3 Chibchan 10° 16′ N; 74° 4′ W Keyeux et al. (2002)
Arhuaco (Ijka) (134) 87 1 12 0 0 Chibchan 9° 04′ N; 73° 59′ W Keyeux et al. (2002); Melton et al. (2007); Rojas et al. (2010)
Yukpa (88) 0 100 0 0 0 Carib 8° 40′ N; 72° 41′ W Keyeux et al. (2002)
Zenu (107) 19 38 36 5 2 Spanish 8° 30′ N; 76° W Mesa et al. (2000); Keyeux et al. (2002); Torres et al. (2006)
Embera (43) 53 35 2 5 5 Choco 7° N; 76° 30′ W Mesa et al. (2000); Keyeux et al. (2002)
Tule-Cuna (30) 50 27 20 0 3 Chibchan 6° 56′ N; 76° 45′ W Keyeux et al. (2002)
Guane-Butaregua (33) 12 64 0 24 0 Chibchan 6° 15′ N; 73° 15′ W Keyeux et al. (2002)
Cubeo (22) 27 18 50 5 0 Tucanoan 5° 9′ N; 70° 18W Torres et al. (2006)
Makiritare (10) 20 0 70 10 0 Carib 5° 33′ N; 65° 33′ W Torroni et al. (1993)
Kali’ na (Galibi) (29) 7 41 38 7 7 Carib 5° 31′ N; 53° 47′ W Mazières et al. (2008)
Guahibo (99) 52 3 33 0 12 Guahiban 5° N; 69° W Keyeux et al. (2002); Vona et al. (2005); Torres et al. (2006)
Waunana (161) 21 49 16 14 0 Choco 4° 50′ N; 77° W Keyeux et al. (2002); Tamm et al. (2007); Rojas et al. (2010)
Palikúr (64) 1 47 4 47 1 Arawakan 4° N; 51° 45′ W Lobato-da-Silva et al. (2001); Mazières et al. (2008)
Macushi (10) 10 20 30 40 0 Carib 4° N; 60° 50′ W Torroni et al. (1993)
Páez (51) 59 12 27 2 0 Páez 3° 9′ N; 75° 28′ W Keyeux et al. (2002); Torres et al. (2006)
Ocaina (2) 0 0 100 0 0 Witotoan 3° 58′ N; 68° 2′ W Torres et al. (2006)
Jebero (1) 0 0 100 0 0 Cahuapanan 3° 58′ N; 68° 2′ W Torres et al. (2006)
Piaroa (28) 36 11 21 32 0 Salivan 3° 57′ N; 66° 22′ W Torroni et al. (1993); Keyeux et al. (2002)
Desano (2) 50 0 0 50 0 Tucanoan 3° 24′ N; 69° 40′ W Torres et al. (2006)
Wapishana (12) 0 25 8 67 0 Arawakan 3° 07′ N; 60° 03′ W Torroni et al. (1993)
Emerillon (30) 30 70 0 0 0 Tupi 3° N; 53° W Mazières et al. (2008)
Guambiano (23) 4 4 79 13 0 Barbacoan 2° 6′ N; 76° 23′ W Keyeux et al. (2002)
Yanomámi (491) 2 25 50 19 4 Yanomam 2° 50′ N; 54° W Torroni et al. (1992, 1993); Easton et al. (1996); Merriwether et al. (2000); Williams et al. (2002); Silva Jr et al. (2003)
Guayabero (30) 50 17 13 0 20 Guahiban 2° 25′ N; 71° 4′ W Keyeux et al. (2002)
Curripaco (22) 41 36 23 0 0 Arawakan 2° 10′ N; 68° 54′ W Keyeux et al. (2002); Torres et al. (2006)
Tiriyó (32) 9 19 22 47 3 Carib 2° N; 56° W Lobato-da-Silva et al. (2001); Silva Jr et al. (2003)
Nukak (20) 0 20 80 0 0 Maku 1° 44′ N; 70° 44′ W Keyeux et al. (2002)
Apalaí (120) 37 1 30 32 0 Carib 1° 20′ N; 54° 40′ W Lobato-da-Silva et al. (2001); Mazières et al. (2008)
Cayapa (120) 29 40 9 22 0 Barbacoan 1° 17′ N; 78° 50′ W Rickards et al. (1999)
Wayampi (99) 62 11 8 19 0 Tupi 1° N; 53° W Santos et al. (1996); Lobato-da-Silva et al. (2001); Silva Jr et al. (2003); Mazières et al. (2008)
Siona (12) 75 17 8 0 0 Tucanoan 0° 6′ N; 75° 36′ W Keyeux et al. (2002)
Pasto (9) 67 33 0 0 0 Barbacoan 0° 58′ N; 77° 44′ W Keyeux et al. (2002)
Yagua (12) 25 0 67 8 0 Peba-Yaguan 0° 51′ N; 72° 27′ W Torres et al. (2006)
Ingano (111) 18 38 42 0 2 Quechuan 0° 50′ N; 77° W Mesa et al. (2000); Keyeux et al. (2002); Torres et al. (2006); Rojas et al. (2010)
Tucano (17) 0 18 47 35 0 Tucanoan 0° 42′ N; 69° 53′ W Keyeux et al. (2002)
Coreguaje (69) 4 20 66 6 4 Tucanoan 0° 38′ N; 76° 8′ W Keyeux et al. (2002); Tamm et al. (2007)
Awa-Juriti (18) 0 72 11 0 17 Tucanoan 0° 16′ N; 70° 45′ W Lobato-da-Silva et al. (2001)
Muinane (19) 11 21 37 26 5 Witotoan 0° 11′ N; 73° 25′ W Keyeux et al. (2002)
Poturujara (23) 44 0 26 30 0 Tupi 0° 18′ S; 55° 18′ W Lobato-da-Silva et al. (2001); Silva Jr et al. (2003)
Katuena (23) 26 9 35 30 0 Carib 0° 40′ S; 57° 30′ W Lobato-da-Silva et al. (2001); Silva Jr et al. (2003)
Wai-wai (26) 15 15 43 27 0 Carib 0° 40′ S; 58° W Bonatto and Salzano (1997)
Urubu Kaapor (42) 21 31 14 29 5 Tupi 2°–3° S; 46°–47° W Torroni et al. (1992, 1993); Lobato-da-Silva et al. (2001); Dornelles et al. (2005)
Huitoto (35) 23 3 25 46 3 Witotoan 2° 14′ S; 72° 19′ W Keyeux et al. (2002); Torres et al. (2006)
Arara (70) 54 20 26 0 0 Carib 3° 30′–4° 20′ S; 53° 0′–54° 10′ W Lobato-da-Silva et al. (2001); Ribeiro-dos-Santos et al. (2001); Silva Jr et al. (2003); Bisso-Machado (2010, MSc Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.)
Awa-Guajá (53) 13 87 0 0 0 Tupi 3° 30′ S; 46° 40′ W Lobato-da-Silva et al. (2001)
Asurini (24) 4 54 17 21 4 Tupi 3° 35′–4° 12′ S; 49° 40′–52° 26′ W Lobato-da-Silva et al. (2001)
Piapoco (39) 18 3 15 5 59 Arawakan 3° 36′ S; 70° 23′ W Torres et al. (2006)
Puinave (19) 5 16 58 16 5 Puinave 3° 36′ S; 70° 23′ W Torres et al. (2006)
Sáliba (13) 15 0 55 15 15 Salivan 3° 49′ S; 70° 9′ W Torres et al. (2006)
Ticuna (371) 20 11 35 33 1 Ticuna 4° S; 69° 58′ W Schurr et al. (1990); Mesa et al. (2000); Torres et al. (2006); Mendes-Junior and Simões (2009); Rojas et al. (2010)
Parakanã (31) 6 39 32 23 0 Tupi 5° 22′ S; 51° 17′ W Lobato-da-Silva et al. (2001); Bisso-Machado (2010, MSc Dissertation)
Xikrin (33) 30 64 3 3 0 Macro-Ge 5° 55′ S; 51° W Lobato-da-Silva et al. (2001); Dornelles et al. (2005); Bisso-Machado (2010, MSc Dissertation)
Suruí (44) 7 4 0 89 0 Tupi 5° 58′ -10° 50′ S; 48° 39′ -61° 10′ W Bonatto and Salzano (1997); Lobato-da-Silva et al. (2001)
Araweté (18) 39 0 50 11 0 Tupi 5° 9′ S; 52° 22′ W Lobato-da-Silva et al. (2001)
Munduruku (92) 12 17 9 58 4 Tupi 6° 23′ S; 59° 9′ W Torroni et al. (1992, 1993); Lobato-da-Silva et al. (2001); Marrero et al. (2007); Bisso-Machado (2010, MSc Dissertation)
Marubo (10) 10 0 60 30 0 Panoan 6° 47′ S; 72° 80′ W Torroni et al. (1993)
Jamamadi (23) 0 0 96 4 0 Arauan 7° 15′ S; 66° 41′ W Lobato-da-Silva et al. (2001); Bisso-Machado (2010, MSc Dissertation)
Yungay (38) 5 45 34 16 0 Quechuan 7° 26′ S; 77° 4′ W Lewis Jr et al. (2007)
Ancash (33) 9 52 18 21 0 Quechua 7° 41′ S; 77° 6′ W Lewis Jr et al. (2005)
Gorotire (11) 28 18 18 36 0 Macro-Ge 7° 44′ S; 51° 10′ W Bisso-Machado (2010, MSc Dissertation)
Krahó (14) 29 57 14 0 0 Macro-Ge 8° S; 47° 15′ W Torroni et al. (1993)
Kuben-Kran-Kegn (19) 58 26 6 10 0 Macro-Ge 8° 10′ S; 52° 8′ W Bisso-Machado (2010, MSc Dissertation)
Mekranoti (19) 26 63 11 0 0 Macro-Ge 8° 40′ S; 54° W Dornelles et al. (2005); Bisso-Machado (2010, MSc Dissertation)
Kubenkokre (4) 0 100 0 0 0 Macro-Ge 8° 43′ S; 53° 23′ W Marrero et al. (2007)
Kayapó (13) 46 54 0 0 0 Macro-Ge 9° S; 53° W Lobato-da-Silva et al. (2001)
Karitiana (19) 0 11 0 89 0 Tupi 9° 30′ S; 64° 15′ W Lobato-da-Silva et al. (2001)
Cinta-Larga (45) 25 0 20 53 2 Tupi 9° 50′–12° 30′ S; 59° 10′–60° 50′ W Lobato-da-Silva et al. (2001); Dornelles et al. (2005); Bisso-Machado (2010, MSc Dissertation)
Gavião (27) 15 15 0 70 0 Tupi 10° 10′ S; 61° 8′ W Ward et al. (1996)
Tupe (16) 0 69 31 0 0 Aymaran 10° 16′ S; 75° 47′ W Lewis Jr et al. (2007)
Txukahamãe (2) 100 0 0 0 0 Macro-Ge 10° 20′ S; 53° 5′ W Dornelles et al. (2005)
Zoró (30) 20 7 13 60 0 Tupi 10° 20′ S; 60° 20′ W Ward et al. (1996)
Matsiguenga (38) 5 92 0 3 0 Arawakan 10° 47′–12° 51′ S; 73° 17′ -70° 44′ W Mazières et al. (2008)
Kokraimoro (2) 50 50 0 0 0 Macro-Ge 10° 49′ S; 55° 27′ W Marrero et al. (2007)
Pacaás Novos (Wari) (30) 40 30 27 3 0 Chapacura-Wanh am 11° 8′ S; 65° W Bisso-Machado (2010, MSc Dissertation)
Tayacaja (61) 21 33 13 30 3 Quechuan 12° 24′ S; 74° 34′ W Fuselli et al. (2003)
Arequipa (22) 9 68 14 9 0 Quechua 13° 13′ S; 72° 11′ W Fuselli et al. (2003)
Trinitario (35) 14 40 37 3 6 Arawakan 14° S; 65° W Bert et al. (2001)
Xavánte (25) 16 84 0 0 0 Macro-Ge 14° S; 52° 30′ W Ward et al. (1996)
Movima (22) 9 9 64 18 0 Movima 14° 26′ S; 65° 53′ W Bert et al. (2001)
Quechua (232) 14 62 15 9 0 Quechuan 14° 30′ S; 69° W Merriwether et al. (1995); Bert et al. (2001); Silva Jr et al. (2003); Lewis Jr et al. (2007); Corella et al. (2007); Barbieri et al. (2011); Gayà-Vidal et al. (2011)
Chimane (Moseten) (71) 39 54 3 0 4 Chimane 14° 41′ S; 66° 50′ W Bert et al. (2001); Corella et al. (2007);
Ignaciano (22) 18 36 41 0 5 Arawakan 15° 1′ S; 66° 4′ W Bert et al. (2001)
Uro (64) 11 69 9 11 0 Uru-Chipaya 15° 45′ S; 69° 53′ W Barbieri et al. (2011)
Yuracare (28) 39 32 21 4 4 Yuracare 17° S; 65° W Bert et al. (2001)
Aymara (411) 4 76 8 11 1 Aymaran 17° 68′ S; 69° 16′ W Merriwether et al. (1995); Easton et al. (1996); Bert et al. (2001); Lewis Jr et al. (2007); Corella et al. (2007); Barbieri et al. (2011); Gayà-Vidal et al. (2011)
Ayoreo (91) 0 0 83 17 0 Zamucoan 19° S; 60° 30′ W Dornelles et al. (2004)
Wichí (199) 12 51 7 29 1 Mataco-Guaicuru 22° 28′ S; 62° 70′ W Torroni et al. (1993); Bianchi et al. (1995); Bravi et al. (1995); Demarchi et al. (2001); Cabana et al. (2006)
Chorote (34) 15 44 23 18 0 Mataco-Guaicuru 22° 90′ S; 65° 40′ W Bianchi et al. (1995); Bravi et al. (1995)
Humahuaca (46) 11 68 17 4 0 Spanish 23° 11′ S; 65° 20′ W Dipierri et al. (1998)
Aché (63) 10 90 0 0 0 Tupi 23° 30′–24° 10′ S; 55° 50′–56° 30′ W Schmitt et al. (2004)
Atacameño (79) 13 73 10 4 0 Atacama 23° 50′ S; 68° W Baillliet et al. (1994); Merriwether et al. (1995); Merriwether and Ferrell (1996)
Guarani (249) 77 6 9 6 2 Tupi 23° 6′ S; 55° 12′ W Silva Jr et al. (2003); Marrero et al. (2007); García and Demarchi (2009)
Pilagá (41) 5 37 27 29 2 Mataco-Guaicuru 24° S; 59° W Demarchi et al. (2001); Cabana et al. (2006)
Coya (60) 13 57 23 5 2 Coya 25° 30′ S; 67° 28′ W Álvarez-Iglesias et al. (2007)
Toba (80) 15 43 5 37 0 Mataco-Guaicuru 26° S; 58° W Bianchi et al. (1995); Demarchi et al. (2001); Goicoechea et al. (2001); Cabana et al. (2006)
Jujuy (19) 16 58 16 10 0 Spanish 27° 27′ S; 58° 59′ W Dipierri et al. (1998)
Kaingang (79) 47 4 48 0 1 Macro-Ge 28° S; 51° 20′ W Dornelles et al. (2005); Marrero et al. (2007)
Mocoví (5) 80 0 0 20 0 Mataco-Guaicuru 29° 51′ S; 59° 56′ W Tamm et al. (2007)
Pehuenche (205) 2 9 40 49 0 Araucanian 37° 43′ S; 71° 16′ W Merriwether et al. (1995); Moraga et al. (1997, 2000)
Mapuche (314) 5 23 32 36 4 Araucanian 39° 10′–41° 20′ S; 68° 37′–70° 22′ W Ginther et al. (1993); Horai et al. (1993); Bailliet et al. (1994); Bianchi et al. (1995); Moraga et al. (2000)
Huilliche (207) 4 28 20 48 0 Araucanian 41° 16′ S; 73° W Bailliet et al. (1994); Merriwether et al. (1995); Merriwether and Ferrell (1996)
Aónikenk3, 4 (15) 0 0 27 73 0 Chon 45° S; 71° W Lalueza (1995, PhD thesis, Universitat de Barcelona, Barcelona, Spain)
Tehuelche4 (29) 0 20 24 56 0 Chon 45° S; 71° W Moraga et al. (2000)
Yámana3 (Yaghan) (32) 0 0 63 37 0 Yámana 47° S; 74° W Lalueza (1995, PhD thesis); Moraga et al. (1997, 2000)
Kawéskar2 (Alacaluf) (19) 0 0 16 84 0 Alacalufan 49° S; 74° W Lalueza (1995, PhD thesis)
Selknam2 (Ona) (16) 0 0 56 38 6 Chon 54° S; 74° W Lalueza (1995, PhD thesis); García-Bour et al. (2004)
1

Arranged according to latitude.

2

Probably of non-Amerindian origin.

3

Ancient DNA.

4

Aónikenk and Tehuelche are the same tribe separated by time. Aónikenk refers to ancient DNA.

Table 6 summarizes the influence of geography. In the seven regions that were defined, 74% of the variation occurred within populations, 6% among geographic divisions and 20% among populations within divisions. To analyze this variability further, the isolated frequencies of haplogroups A to D were plotted as shown in Figure 2. High frequencies of haplogroup C were observed in specific regions along the northwestern portion of the continent, with additional high spots in southern Brazil and northern Argentina. The prevalences of haplogroups B and D showed a clear east-west separation, while for haplo-group A there were three main high prevalence nuclei in the north, center and south of the continent. Spearman’s correlation coefficient between haplogroup frequencies and latitude yielded a positive value (0.27; p < 0.01) for haplogroup A, with a corresponding negative one (−0.25; p < 0.01) for haplogroup D. The coefficients for haplo-groups B and C were not significant.

Table 6.

Mitochondrial DNA haplogroup frequencies by geography1.

Geographic divisions No. of populations No. of individuals Haplogroups (%)
A B C D Other
Amazonia 55 2410 20 21 31 25 3
Central Plateau 2 39 21 74 5 0 0
Southern Brazil 2 328 70 6 18 4 2
Chaco 6 479 10 43 22 24 1
Southern South America 3 726 4 20 31 43 2
Tierra del Fuego 5 111 0 5 39 55 1
Andes 35 2604 27 45 20 7 1
Total 108 6697
1

AMOVA results: (a) Among geographic divisions: 6.2%; (b) Among populations within geographic divisions: 19.5%; (c) Within populations: 74.3%. The three values are statistically significant.

Figure 2.

Figure 2

Isoline map distribution showing the geographic pattern of the four (A–D) mtDNA haplogroups in South Amerindians. The dots indicate the locations of the populations sampled. As indicated in the scales given at right of each map, the colors represent the haplogroup frequencies, from dark blue (0.00) to red (1.00).

Table 7 summarizes the influence of language. Sixteen main language groups were considered, plus a composite set of “others”. The AMOVA results indicated that 73% of the haplogroup prevalence variability occurred within populations, with 7% of it being attributable to languages. However, there was considerable heterogeneity (20%) within the language categories established. Overall, the variability was similar to that obtained for geography.

Table 7.

Mitochondrial DNA haplogroup frequencies by language1.

Language No. of populations No. of individuals Haplogroups (%)
A B C D Other
Tupi 16 889 38 24 10 27 1
Macro-Ge 11 221 37 38 21 3 1
Carib 9 408 24 32 25 18 1
Chibchan 6 461 69 6 22 2 1
Mataco-Guaicuru 5 359 13 46 11 29 1
Arawakan 8 321 16 38 24 13 9
Araucanian 3 726 4 20 31 43 2
Choco 2 204 28 46 13 12 1
Chon 3 60 0 10 33 55 2
Tucanoan 6 140 14 26 48 8 4
Aymaran 2 427 4 76 9 10 1
Barbacoan 3 152 28 34 19 19 0
Guahiban 2 129 51 6 29 0 14
Witotoan 3 56 18 9 32 37 4
Salivan 2 41 29 7 32 27 5
Quechuan 6 497 14 51 23 11 1
Other 21 1606 13 26 40 19 2
Total 108 6697
1

AMOVA results: (a) Among language groups: 6.6%; (b) Among populations within language groups: 20.1%; (c) Within populations: 73.3%. The three values are statistically significant.

Conclusion

South Amerindians have been extensively studied with regard to the Y-chromosome, as well as and especially so for mtDNA markers. In agreement with studies from other regions, by far most of the mtDNA variability (73%–74%) is intrapopulational. Geographical and linguistic factors influenced the patterns of mtDNA diversity to a similar extent, while geography was apparently more important than language in explaining the data for the Y chromosome Q clade-STRs. Additional factors that may have influenced these results include distinct male and female migration patterns, as well as cultural and other characteristics. The fact that most studies have generally dealt with small populations, in which genetic drift may be important, could also have influenced the results.

Table 2(b).

Y-Q-chromosome STR studies in distinct South Amerindian samples in which allele frequencies can be assessed (Part B).

Ref. (n)
STR (allele) Mocoví (2)8 Pacaás Novos (15)2 Parakanã (4)2 Pilagá (9)3 Quechua (58)10, 11 Ticuna (36)2 Toba (70)3, 7 Warao (12)2 Wayampi (10)1 Wayuu (14)2 Wichí (27)3 Yanomama (9)1 Yukpa (12)2 Zenu (28)2 Total (590)
DYS19 (12) 0.030 0.030 0.010
DYS19 (13) 0.500 0.790 0.950 0.850 0.870 1.000 0.790 0.640 0.550 0.650 0.890
DYS19 (14) 0.500 1.000 0.210 0.030 0.090 0.090 0.140 0.230 0.450 0.270 0.050
DYS19 (15) 0.020 0.060 0.010 0.070 0.100 0.080 0.040
DYS19 (16) 0.010
DYS19 total 474
DYS388 (12) 0.860 1.000 0.780 0.750 0.570 0.500 0.500 0.780
DYS388 (13) 0.140 0.220 0.250 0.430 0.500 0.430 0.200
DYS388 (14) 0.010
DYS388 (17) 0.070 0.040
DYS388 total 189
DYS389I (12) 0.090 0.080
DYS389I (13) 1.000 0.240 0.800 0.440
DYS389I (14) 0.670 0.200 0.450
DYS389I (15) 0.030
DYS389I total 288
DYS389II (17) 0.270 0.020
DYS389II (18) 0.530 0.030
DYS389II (19) 0.200 0.010
DYS389II (26) 0.010
DYS389II (27) 0.010
DYS389II (28) 0.090 0.030
DYS389II (29) 0.070 0.110
DYS389II (30) 0.210 0.500 0.290
DYS389II (31) 0.500 0.540 0.320 0.390
DYS389II (32) 0.500 0.090 0.160 0.080
DYS389II (33) 0.010
DYS389II (34) 0.020 0.010
DYS389II total 288
DYS390 (20) 0.020 0.010
DYS390 (21) 0.240 0.070
DYS390 (22) 0.020 0.080 0.030 0.780 0.070
DYS390 (23) 0.500 0.450 0.210 0.450 0.060 0.110 0.080 1.000 0.220 0.070 0.250 0.320
DYS390 (24) 0.500 0.550 1.000 0.790 0.220 0.150 0.730 0.920 0.560 0.740 0.110 1.000 0.290 0.400
DYS390 (25) 0.050 0.760 0.080 0.220 0.130 0.420 0.110
DYS390 (26) 0.030 0.010
DYS390 (27) 0.030 0.110 0.040 0.010
DYS390 total 659
DYS391 (9) 0.070 0.030 0.030
DYS391 (10) 1.000 1.000 0.890 0.840 0.930 0.900 0.250 0.570 0.870 1.000 0.640 0.800
DYS391 (11) 1.000 0.110 0.160 0.070 0.100 0.750 0.360 0.100 0.360 0.160
DYS391 (12) 0.010
DYS391 total 512
DYS392 (11) 0.030 0.570 0.060 0.020
DYS392 (12) 1.000 0.070 0.130 0.030
DYS392 (13) 1.000 0.890 0.100 0.100 0.110 0.130 0.890 0.180 0.060 0.170
DYS392 (14) 0.110 0.800 0.520 0.380 0.670 0.890 0.290 0.420 0.110 0.460 0.560 0.510
DYS392 (15) 0.100 0.070 0.620 0.190 0.070 0.390 0.360 0.250 0.150
DYS392 (16) 0.290 0.100
DYS392 (17) 0.020 0.010
DYS392 (18) 0.100 0.010 0.010
DYS392 total 535
DYS393 (11) 1.000 0.040
DYS393 (12) 0.060 0.010 0.100 0.060 0.040 0.040
DYS393 (13) 1.000 0.780 1.000 0.550 0.710 0.980 0.750 0.800 0.840 0.890 0.500 0.200 0.670
DYS393 (14) 0.220 0.450 0.170 0.010 0.250 1.000 0.100 0.100 0.110 0.500 0.240 0.220
DYS393 (15) 0.030 0.480 0.020
DYS393 (16) 0.030 0.040 0.010
DYS393 total 584
DYS437 (8) 0.420 0.360 1.000 0.200
DYS437 (9) 0.580 0.030 0.040
DYS437 (11) 0.010
DYS437 (14) 1.000 0.500 0.700
DYS437 (15) 0.110 0.050
DYS437 total 322
DYS438 (9) 0.020 0.010
DYS438 (10) 0.050 0.160 0.050
DYS438 (11) 0.790 0.930 0.850 0.840 0.850
DYS438 (12) 0.210 0.050 0.100 0.080
DYS438 (16) 0.010
DYS438 total 322
DYS439 (9) 0.010
DYS439 (10) 0.010
DYS439 (11) 0.090 0.130 0.230 0.140
DYS439 (12) 0.320 0.240 0.500 0.710 0.400
DYS439 (13) 0.680 0.500 0.290 0.060 0.330
DYS439 (14) 0.170 0.080 0.110
DYS439 total 322
DYS448 (18) 0.010
DYS448 (19) 0.140 0.020 0.090
DYS448 (20) 0.550 0.930 0.740
DYS448 (21) 0.240 0.050 0.140
DYS448 (22) 0.070 0.020
DYS448 total 169
DYS456 (11) 0.010
DYS456 (13) 0.020
DYS456 (14) 0.230 0.020 0.090
DYS456 (15) 0.720 0.730 0.750
DYS456 (16) 0.050 0.250 0.120
DYS456 (17) 0.010
DYS456 total 169
DYS458 (13) 0.020
DYS458 (15) 0.030 0.040 0.040
DYS458 (16) 0.360 0.180 0.380
DYS458 (17) 0.520 0.550 0.410
DYS458 (18) 0.090 0.230 0.140
DYS458 (19) 0.010
DYS458 total 169
DYS635 (22) 0.950 0.950 0.890
DYS635 (23) 0.020 0.050 0.090
DYS635 (24) 0.030 0.010
DYS635 (26) 0.010
DYS635 total 169

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Programa de Apoio a Núcleos de Excelência (FAPERGS/PRONEX). We thank Sidia M. Callegari-Jacques and Luciana Tovo-Rodrigues for their help with early aspects of the statistical analyses.

Footnotes

Associate Editor: Mara H. Hutz

References

  1. Altuna ME, Modesti NM, Demarchi DA. Y-chromosomal evidence for a founder effect in Mbyá-guaraní Amerindians from northeast Argentina. Hum Biol. 2006;78:635–639. doi: 10.1353/hub.2007.0000. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Iglesias V, Jaime JC, Carracedo A, Salas A. Coding region mitochondrial DNA SNPs: Targeting East Asian and Native American haplogroups. Forensic Sci Int Genet. 2007;1:44–55. doi: 10.1016/j.fsigen.2006.09.001. [DOI] [PubMed] [Google Scholar]
  3. Alves-Silva J, da Silva Santos M, Guimarães PE, Ferreira AC, Bandelt HJ, Pena SD, Prado VF. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet. 2000;67:444–461. doi: 10.1086/303004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailliet G, Rothhammer F, Carnese FR, Bravi CM, Bianchi NO. Founder mitochondrial haplotypes in Amerindian populations. Am J Hum Genet. 1994;54:27–33. [PMC free article] [PubMed] [Google Scholar]
  5. Bailliet G, Ramallo V, Muzzio M, García A, Santos MR, Alfaro EL, Dipierri JE, Salceda S, Carnese FR, Bravi CM, et al. Brief communication: Restricted geographic distribution for Y-Q* paragroup in South America. Am J Phys Anthropol. 2009;140:578–582. doi: 10.1002/ajpa.21133. [DOI] [PubMed] [Google Scholar]
  6. Barbieri C, Heggarty P, Castrì L, Luiselli D, Pettener D. Mitochondrial DNA variability in the Titicaca basin: Matches and mismatches with linguistics and ethnohistory. Am J Hum Biol. 2011;23:89–99. doi: 10.1002/ajhb.21107. [DOI] [PubMed] [Google Scholar]
  7. Bert F, Corella A, Gené M, Pérez-Pérez A, Turbón D. Major mitochondrial DNA haplotype heterogeneity in highland and lowland Amerindian populations from Bolivia. Hum Biol. 2001;73:1–16. doi: 10.1353/hub.2001.0001. [DOI] [PubMed] [Google Scholar]
  8. Bert F, Corella A, Gene M, Pérez-Pérez A, Turbón D. Mitochondrial DNA diversity in the Llanos de Moxos: Moxo, Movima and Yuracare Amerindian populations. Ann Hum Biol. 2004;31:9–28. doi: 10.1080/03014460310001616464. [DOI] [PubMed] [Google Scholar]
  9. Bianchi NO, Bailliet G, Bravi CM. Peopling of the Americas as inferred through the analysis of mitochondrial DNA. Braz J Genet. 1995;18:161–168. [Google Scholar]
  10. Bianchi NO, Catanesi CI, Bailliet G, Martínez-Marignac VL, Bravi CM, Vidal-Rioja LB, Herrera RJ, López-Camelo JS. Characterization of ancestral and derived Y-chromosome haplotypes of New World native populations. Am J Hum Genet. 1998;63:1862–1871. doi: 10.1086/302141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bisso-Machado R, Jota MS, Ramallo V, Paixão-Côrtes VR, Lacerda DR, Salzano FM, Bonatto SL, Santos FR, Bortolini MC. Distribution of Y-chromosome Q lineages in Native Americans. Am J Hum Biol. 2011;23:563–566. doi: 10.1002/ajhb.21173. [DOI] [PubMed] [Google Scholar]
  12. Blanco-Verea A, Jaime JC, Brión M, Carracedo A. Y-chromosome lineages in native South American populations. Forensic Sci Int Genet. 2010;4:187–193. doi: 10.1016/j.fsigen.2009.08.008. [DOI] [PubMed] [Google Scholar]
  13. Bonatto SL, Salzano FM. A single and early migration for the peopling of the Americas supported by mitochondrial DNA sequence data. Proc Natl Acad Sci USA. 1997;94:1866–1871. doi: 10.1073/pnas.94.5.1866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bortolini MC, Da Silva Junior WA, De Guerra DC, Remonatto G, Mirandola R, Hutz MH, Weimer TA, Silva MC, Zago MA, Salzano FM. African-derived South American populations: A history of symmetrical and asymmetrical matings according to sex revealed by bi- and uni-parental genetic markers. Am J Hum Biol. 1999;11:551–563. doi: 10.1002/(SICI)1520-6300(1999)11:4<551::AID-AJHB15>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  15. Bortolini MC, Salzano FM, Bau CHD, Layrisse Z, Petzl-Erler ML, Tsuneto LT, Hill K, Hurtado AM, Castro-de-Guerra D, Bedoya G, et al. Y-chromosome biallelic polymorphisms and Native American population structure. Ann Hum Genet. 2002;66:255–259. doi: 10.1017/S0003480002001148. [DOI] [PubMed] [Google Scholar]
  16. Bortolini MC, Salzano FM, Thomas MG, Stuart S, Nasanen SPK, Bau CHD, Hutz MH, Layrisse Z, Petzl-Erler ML, Tsuneto LT, et al. Y-Chromosome evidence for differing ancient demographic histories in the Americas. Am J Hum Genet. 2003;73:524–539. doi: 10.1086/377588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bravi CM, Cejas S, Bailliet G, Goicoechea AS, Carnese FR, Bianchi NO. Abstracts do XXVI Congreso Argentino de Genética. San Carlos de Bariloche: 1995. Haplotipos mitocondriales en Amerindios; p. 152. [Google Scholar]
  18. Cabana GS, Merriwether DA, Hunley K, Demarchi DA. Is the genetic structure of Gran Chaco populations unique? Interregional perspectives on Native South American mitochondrial DNA variation. Am J Phys Anthropol. 2006;131:108–119. doi: 10.1002/ajpa.20410. [DOI] [PubMed] [Google Scholar]
  19. Carvalho-Silva DR, Santos FR, Hutz MH, Salzano FM, Pena SDJ. Divergent human Y-chromosome microsatellite evolution rates. J Mol Evol. 1999;49:204–214. doi: 10.1007/pl00006543. [DOI] [PubMed] [Google Scholar]
  20. Carvalho-Silva DR, Santos FR, Rocha J, Pena SD. The phylogeography of Brazilian Y-chromosome lineages. Am J Hum Genet. 2001;68:281–286. doi: 10.1086/316931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Corella A, Bert F, Pérez-Pérez A, Gené M, Turbón D. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua. Ann Hum Biol. 2007;34:34–55. doi: 10.1080/03014460601075819. [DOI] [PubMed] [Google Scholar]
  22. Crawford MH. The Origins of Native Americans Evidence from Anthropological Genetics. Cambridge University Press; Cambridge: 1998. p. 308. [Google Scholar]
  23. Demarchi DA, Mitchell RJ. Genetic structure and gene flow in Gran Chaco populations of Argentina: Evidence from Y-Chromosome markers. Hum Biol. 2004;76:413–429. doi: 10.1353/hub.2004.0043. [DOI] [PubMed] [Google Scholar]
  24. Demarchi DA, Panzetta-Dutari GM, Colantonio SE, Marcellino AJ. Absence of the 9-bp deletion of mitochondrial DNA in pre-Hispanic inhabitants of Argentina. Hum Biol. 2001;73:575–582. doi: 10.1353/hub.2001.0050. [DOI] [PubMed] [Google Scholar]
  25. Dipierri JE, Alfaro E, Martínez-Marignac VL, Bailliet G, Bravi CM, Cejas S, Bianchi NO. Paternal directional mating in two Amerindian subpopulations located at different altitudes in northwestern Argentina. Hum Biol. 1998;70:1001–1010. [PubMed] [Google Scholar]
  26. Dornelles CL, Battilana J, Fagundes NJ, Freitas LB, Bonatto SL, Salzano FM. Mitochondrial DNA and Alu insertions in a genetically peculiar population: The Ayoreo. Am J Hum Biol. 2004;16:479–488. doi: 10.1002/ajhb.20038. [DOI] [PubMed] [Google Scholar]
  27. Dornelles CL, Bonatto SL, Freitas LB, Salzano FM. Is haplogroup X present in extant South American Indians? Am J Phys Anthropol. 2005;127:439–448. doi: 10.1002/ajpa.20103. [DOI] [PubMed] [Google Scholar]
  28. Eastman JR. IDRISI 15.0: The Andes edition. Clark University; Worcester: 2006. [Google Scholar]
  29. Easton RD, Merriwether DA, Crews DE, Ferrell RE. mtDNA variation in the Yanomami: Evidence for additional New World founding lineages. Am J Hum Genet. 1996;59:213–225. [PMC free article] [PubMed] [Google Scholar]
  30. Excoffier L, Lischer HE. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. [DOI] [PubMed] [Google Scholar]
  31. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Fagundes NJR, Kanitz R, Eckert R, Valls ACS, Bogo MR, Salzano FM, Smith DG, Silva WA, Jr, Zago MA, Ribeiro-dos-Santos AK, et al. Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas. Am J Hum Genet. 2008;82:583–592. doi: 10.1016/j.ajhg.2007.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Fehren-Schmitz L, Reindel M, Cagigao ET, Hummel S, Herrmann B. Pre-Columbian population dynamics in coastal southern Peru: A diachronic investigation of mtDNA patterns in the Palpa region by ancient DNA analysis. Am J Phys Anthropol. 2010;141:208–221. doi: 10.1002/ajpa.21135. [DOI] [PubMed] [Google Scholar]
  34. Fehren-Schmitz L, Warnberg O, Reindel M, Seidenberg V, Tomasto-Cagigao E, Isla-Cuadrado J, Hummel S, Herrmann B. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru. Ann Hum Genet. 2011;75:266–283. doi: 10.1111/j.1469-1809.2010.00620.x. [DOI] [PubMed] [Google Scholar]
  35. Fuselli S, Tarazona-Santos S, Dupanloup I, Soto A, Luiselli D, Pettener D. Mitochondrial DNA diversity in South America and the genetic history of Andean Highlanders. Mol Biol Evol. 2003;20:1682–1691. doi: 10.1093/molbev/msg188. [DOI] [PubMed] [Google Scholar]
  36. García A, Demarchi DA. Incidence and distribution of Native American mtDNA haplogroups in central Argentina. Hum Biol. 2009;81:59–69. doi: 10.3378/027.081.0105. [DOI] [PubMed] [Google Scholar]
  37. García F, Moraga M, Vera S, Henríquez H, Llop E, Aspillaga E, Rothhammer F. mtDNA microevolution in Southern Chile’s archipelagos. Am J Phys Anthropol. 2006;129:473–481. doi: 10.1002/ajpa.20297. [DOI] [PubMed] [Google Scholar]
  38. García-Bour J, Pérez-Pérez A, Álvarez S, Fernández E, López-Parra AM, Arroyo-Pardo E, Turbón D. Early population differentiation in extinct aborigines from Tierra Del Fuego – Patagonia: Ancient mtDNA sequences and Y-chromosome STR characterization. Am J Phys Anthropol. 2004;123:361–370. doi: 10.1002/ajpa.10337. [DOI] [PubMed] [Google Scholar]
  39. Gayà-Vidal M, Moral P, Saenz-Ruales N, Gerbault P, Tonasso L, Villena M, Vasquez R, Bravi CM, Dugoujon JM. mtDNA and Y-chromosome diversity in Aymaras and Quechuas from Bolivia: Different stories and special genetic traits of the Andean Altiplano populations. Am J Phys Anthropol. 2011;145:215–230. doi: 10.1002/ajpa.21487. [DOI] [PubMed] [Google Scholar]
  40. Geppert M, Baeta M, Núñez C, Martínez-Jarreta B, Zweynert S, Cruz OW, González-Andrade F, González-Solorzano J, Nagy M, Roewer L. Hierarchical Y-SNP assay to study the hidden diversity and phylogenetic relationship of native populations in South America. Forensic Sci Int Genet. 2011;5:100–104. doi: 10.1016/j.fsigen.2010.08.016. [DOI] [PubMed] [Google Scholar]
  41. Ginther C, Corach D, Penacino GA, Rey JA, Carnese FR, Hutz MH, Anderson A, Just J, Salzano FM, King M-C. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: Mitochondrial DNA sequence variation and allele frequencies of several nuclear genes. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ, editors. DNA Fingerprinting: State of the Science Birkhäuser Verlag. Berlin: 1993. pp. 211–219. [DOI] [PubMed] [Google Scholar]
  42. Goicoechea AS, Carnese FR, Dejean C, Avena SA, Weimer TA, Estalote AC, Simões ML, Palatnik M, Salamoni SP, Salzano FM, et al. New genetic data on Amerindians from the Paraguayan Chaco. Am J Hum Biol. 2001;13:660–667. doi: 10.1002/ajhb.1104. [DOI] [PubMed] [Google Scholar]
  43. Horai S, Kondo S, Nakagawa-Hattori Y, Hayashi S, Sonoda S, Tajima K. Peopling of the Americas, founded by four major lineages of mitochondrial DNA. Mol Biol Evol. 1993;10:23–47. doi: 10.1093/oxfordjournals.molbev.a039987. [DOI] [PubMed] [Google Scholar]
  44. Hunley KL, Cabana GS, Merriwether DA, Long JC. A formal test of linguistic and genetic coevolution in native Central and South America. Am J Phys Anthropol. 2007;132:622–631. doi: 10.1002/ajpa.20542. [DOI] [PubMed] [Google Scholar]
  45. Ingman M, Kaessmann H, Pääbo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature. 2000;408:708–713. doi: 10.1038/35047064. [DOI] [PubMed] [Google Scholar]
  46. Jota MS, Lacerda DR, Sandoval JR, Vieira PPR, Santos-Lopes SS, Bisso-Machado R, Paixão-Cortes VR, Revollo S, Pazy-Miño C, Fujita R, et al. A new subhaplogroup of Native American Y chromosomes from the Andes. Am J Phys Anthropol. 2011;146:553–559. doi: 10.1002/ajpa.21519. [DOI] [PubMed] [Google Scholar]
  47. Karafet T, Segura SL, Vuturo-Brady J, Posukh O, Osipova L, Wiebe V, Romero F, Long JC, Harihara S, Jin F, et al. Y chromosome markers and trans-Bering Strait dispersals. Am J Phys Anthropol. 1997;102:301–314. doi: 10.1002/(SICI)1096-8644(199703)102:3<301::AID-AJPA1>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  48. Karafet TM, Zegura SL, Posukh O, Osipova L, Bergen A, Long J, Goldman D, Klitz W, Harihara S, de Knijff P, et al. Ancestral Asian source(s) of New World Y-chromosome founder haplotypes. Am J Hum Genet. 1999;64:817–831. doi: 10.1086/302282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res. 2008;18:830–838. doi: 10.1101/gr.7172008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Keyeux G, Rodas C, Gelvez N, Carter D. Possible migration routes into South America deduced from mitochondrial DNA studies in Colombian Amerindian populations. Hum Biol. 2002;74:211–233. doi: 10.1353/hub.2002.0022. [DOI] [PubMed] [Google Scholar]
  51. Kivisild T, Shen P, Wall D, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, et al. The role of selection in the evolution of human mitochondrial genomes. Genetics. 2006;172:373–387. doi: 10.1534/genetics.105.043901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Leite FP, Callegari-Jacques SM, Carvalho BA, Kommers T, Matte CH, Raimann PE, Schwengber SP, Sortica VA, Tsuneto LT, Petzl-Erler ML, et al. Y-STR analysis in Brazilian and South Amerindian populations. Am J Hum Biol. 2008;20:359–363. doi: 10.1002/ajhb.20702. [DOI] [PubMed] [Google Scholar]
  53. Lell JT, Sukernik RI, Starikovskaya YB, Su B, Jin L, Schurr TG, Underhill PA, Wallace DC. The dual origin and Siberian affinities of Native American Y chromosomes. Am J Hum Genet. 2002;70:192–206. doi: 10.1086/338457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lewis CM, Jr, Tito RY, Lizárraga B, Stone AC. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru. Am J Phys Anthropol. 2005;127:351–360. doi: 10.1002/ajpa.20102. [DOI] [PubMed] [Google Scholar]
  55. Lewis CM, Jr, Buikstra JE, Stone AC. Ancient DNA and genetic continuity in the South Central Andes. Lat Am Antiq. 2007;18:1–48. [Google Scholar]
  56. Lobato-da-Silva DF, Ribeiro-dos-Santos AKC, Santos SEB. Diversidade genética de populações humanas na Amazônia. In: Guimarães Vieira IC, Cardoso da Silva JM, Oren DC, D’Ineao MA, editors. Diversidade Humana e Cultural na Amazônia. Museu Paraense Emilio Goeldi; Belém: 2001. pp. 167–193. [Google Scholar]
  57. Marrero AR, Silva-Junior WA, Bravi CM, Hutz MH, Petzl-Erler ML, Ruiz-Linares A, Salzano FM, Bortolini MC. Demographic and evolutionary trajectories of the Guarani and Kaingang natives of Brazil. Am J Phys Anthropol. 2007;132:301–310. doi: 10.1002/ajpa.20515. [DOI] [PubMed] [Google Scholar]
  58. Mazières S, Guitard E, Crubézy E, Dugoujon JM, Bortolini MC, Bonatto SL, Hutz MH, Bois E, Tiouka F, Larrouy G, et al. Uniparental (mtDNA, Y-chromosome) polymorphisms in French Guiana and two related populations – Implications for the region’s colonization. Ann Hum Genet. 2008;72:145–156. doi: 10.1111/j.1469-1809.2007.00392.x. [DOI] [PubMed] [Google Scholar]
  59. Melton PE, Briceño I, Gómez A, Devor EJ, Bernal JE, Crawford MH. Biological relationship between Central and South American Chibchan speaking populations: Evidence from mtDNA. Am J Phys Anthropol. 2007;133:753–770. doi: 10.1002/ajpa.20581. [DOI] [PubMed] [Google Scholar]
  60. Mendes-Junior CT, Simões AL. Mitochondrial DNA variability among eight Tikúna villages: Evidence for an intratribal genetic heterogeneity pattern. Am J Phys Anthropol. 2009;140:526–531. doi: 10.1002/ajpa.21101. [DOI] [PubMed] [Google Scholar]
  61. Merriwether DA, Ferrell RE. The four founding lineage hypothesis for the New World: A critical reevaluation. Mol Phylogenet Evol. 1996;5:241–246. doi: 10.1006/mpev.1996.0017. [DOI] [PubMed] [Google Scholar]
  62. Merriwether DA, Rothhammer F, Ferrell RE. Genetic variation in the New World: Ancient teeth, bone, and tissue as sources of DNA. Experientia. 1994;50:592–601. doi: 10.1007/BF01921730. [DOI] [PubMed] [Google Scholar]
  63. Merriwether DA, Rothhammer F, Ferrell RE. Distribution of the four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World. Am J Phys Anthropol. 1995;98:411–430. doi: 10.1002/ajpa.1330980404. [DOI] [PubMed] [Google Scholar]
  64. Merriwether DA, Kemp BM, Crews DE, Neel JV. Gene flow and genetic variation in the Yanomama as revealed by mitochondrial DNA. In: Renfrew C, editor. America Past, America Present: Genes and Languages in the Americas and Beyond Oxbow books. Oxford: 2000. pp. 89–124. [Google Scholar]
  65. Mesa NR, Mondragón MC, Soto ID, Parra MV, Duque C, Ortíz-Barrientos D, García LF, Velez ID, Bravo ML, Múnera JG, et al. Autosomal, mtDNA, and Y-chromosome diversity in Amerindians: Pre- and post-Columbian patterns of gene flow in South America. Am J Hum Genet. 2000;67:1277–1286. doi: 10.1016/s0002-9297(07)62955-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Monsalve MV, Groot de Restrepo H, Espinel A, Correal G, Devine DV. Evidence of mitochondrial DNA diversity in South American aboriginals. Ann Hum Genet. 1994;58:265–273. doi: 10.1111/j.1469-1809.1994.tb01890.x. [DOI] [PubMed] [Google Scholar]
  67. Moraga M, Rothhammer F, Carvallo P. Barton SA, Rothhammer F, Schull WS, editors. Mitochondrial DNA variation in aboriginal populations of southern Chile. Patterns of Morbidity in Andean Aboriginal Populations: 8,000 Years of Evolution Amphora Editora, Santiago. 1997. pp. 32–36.
  68. Moraga ML, Rocco P, Miquel JF, Nervi F, Llop E, Chakraborty R, Rothhammer F, Carvallo P. Mitochondrial DNA polymorphisms in Chilean aboriginal populations: Implications for the peopling of the southern cone of the continent. Am J Phys Anthropol. 2000;113:19–29. doi: 10.1002/1096-8644(200009)113:1<19::AID-AJPA3>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  69. Moraga M, Santoro CM, Standen VG, Carvallo P, Rothhammer F. Microevolution in prehistoric Andean populations: Chronologic mtDNA variation in the desert valleys of northern Chile. Am J Phys Anthropol. 2005;127:170–181. doi: 10.1002/ajpa.10438. [DOI] [PubMed] [Google Scholar]
  70. Pena S, Santos FR, Bianchi NO, Bravi CM, Carnese RF, Rothhammer F, Gerelsaikhan T, Munkhtuja B, Oyunsuren T. A major founder Y-chromosome haplotype in Amerindians. Nat Genet. 1995;11:15–16. doi: 10.1038/ng0995-15. [DOI] [PubMed] [Google Scholar]
  71. Perego UA, Achilli A, Angerhofer N, Accetturo M, Pala M, Olivieri A, Kashani BH, Ritchie KH, Scozzari R, Kong Q-P, et al. Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups. Curr Biol. 2009;19:1–8. doi: 10.1016/j.cub.2008.11.058. [DOI] [PubMed] [Google Scholar]
  72. Perego UA, Angerhofer N, Pala M, Olivieri A, Lancioni H, Kashani BH, Carossa V, Ekins JE, Gómez-Carballa A, Huber G, et al. The initial peopling of the Americas: A growing number of founding mitochondrial genomes from Beringia. Genome Res. 2010;20:1174–1179. doi: 10.1101/gr.109231.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ribeiro-dos-Santos AKC, Guerreiro JF, Santos SEB, Zago MA. The split of the Arara population: Comparison of genetic drift and founder effect. Hum Hered. 2001;51:79–84. doi: 10.1159/000022962. [DOI] [PubMed] [Google Scholar]
  74. Rickards O, Martinez-Labarga C, Lum JK, De Stefano GF, Cann RL. mtDNA history of the Cayapa Amerinds of Ecuador: Detection of additional founding lineages for the native American populations. Am J Hum Genet. 1999;65:519–530. doi: 10.1086/302513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Rodriguez-Delfin L, Santos SEB, Zago MA. Diversity of the human Y chromosome of South American Amerindians: A comparison with Blacks, Whites and Japanese from Brazil. Ann Hum Genet. 1997;61:439–448. doi: 10.1046/j.1469-1809.1997.6150439.x. [DOI] [PubMed] [Google Scholar]
  76. Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, Duque C, Naranjo A, García J, Vergara C, et al. Genetic makeup and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010;143:13–20. doi: 10.1002/ajpa.21270. [DOI] [PubMed] [Google Scholar]
  77. Sala A, Argüelles CF, Marino ME, Bobillo C, Fenocchio A, Corach D. Genetic analysis of six communities of Mbyá-Guaraní inhabiting northeastern Argentina by means of nuclear and mitochondrial polymorphic markers. Hum Biol. 2010;82:433–456. doi: 10.3378/027.082.0406. [DOI] [PubMed] [Google Scholar]
  78. Salzano FM, Callegari-Jacques SM. South American Indians: A Case Study in Evolution. Clarendon Press; Oxford: 1988. p. 259. [Google Scholar]
  79. Salzano FM, Bortolini MC. Evolution and Genetics of Latin American Populations. Cambridge University Press; Cambridge: 2002. p. 512. [Google Scholar]
  80. Santos FR, Hutz MH, Coimbra CEA, Santos RV, Salzano FM, Pena SDJ. Further evidence for the existence of a major founder Y chromosome haplotype in Amerindians. Braz J Genet. 1995;18:669–672. [Google Scholar]
  81. Santos SEB, Ribeiro-dos-Santos AKC, Meyer D, Zago MA. Multiple founder haplotypes of mitochondrial DNA in Amerindians revealed by RFLP and sequencing. Ann Hum Genet. 1996;60:305–319. doi: 10.1111/j.1469-1809.1996.tb01194.x. [DOI] [PubMed] [Google Scholar]
  82. Schmitt R, Bonatto SL, Freitas LB, Muschner VC, Hill K, Hurtado AM, Salzano FM. Extremely limited mitochondrial DNA variability among the Aché Natives of Paraguay. Ann Hum Biol. 2004;31:87–94. doi: 10.1080/03014460310001602063. [DOI] [PubMed] [Google Scholar]
  83. Schurr TG, Sherry ST. Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: Evolutionary and demographic evidence. Am J Hum Biol. 2004;16:420–439. doi: 10.1002/ajhb.20041. [DOI] [PubMed] [Google Scholar]
  84. Schurr TG, Ballinger SW, Gan Y-Y, Hodge JA, Merriwether DA, Lawrence DN, Knowler WC, Weiss KM, Wallace DC. Amerindian mitochondrial DNAs have rare Asian mutations at high frequencies, suggesting they derived from four primary maternal lineages. Am J Hum Genet. 1990;46:613–623. [PMC free article] [PubMed] [Google Scholar]
  85. Seielstad M, Yuldasheva N, Singh N, Underhill P, Oefner P, Shen P, Wells RS. A novel Y-chromosome variant puts an upper limit on the timing of first entry into the Americas. Am J Hum Genet. 2003;73:700–705. doi: 10.1086/377589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Shimada I, Shinoda K-I, Farnum J, Corruccini R, Watanabe H. An integrated analysis of pre-Hispanic mortuary practices. Curr Anthropol. 2004;45:369–402. [Google Scholar]
  87. Shinoda K, Adachi N, Guillen S, Shimada I. Mitochondrial DNA analysis of ancient Peruvian highlanders. Am J Phys Anthropol. 2006;131:98–107. doi: 10.1002/ajpa.20408. [DOI] [PubMed] [Google Scholar]
  88. Silva WA, Jr, Bonatto SL, Holanda AJ, Ribeiro-dos Santos AK, Paixão BM, Goldman GH, Abe-Sandes K, Rodriguez-Delfin L, Barbosa M, Pacó-Larson ML, et al. Mitochondrial genome diversity of Native Americans supports a single early entry of founder populations into America. Am J Hum Genet. 2002;71:187–192. doi: 10.1086/341358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Silva WA, Jr, Bonatto SL, Holanda AJ, Ribeiro-dos-Santos AK, Paixão BM, Goldman GH, Abe-Sandes K, Rodriguez-Delfin L, Barbosa M, Paçó-Larson ML, et al. Correction: Mitochondrial DNA variation in Amerindians. Am J Hum Genet. 2003;72:1346–1348. [Google Scholar]
  90. Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, Mulligan CJ, Bravi CM, Rickards O, Martinez-Labarga C, Khusnutdinova EK, et al. Beringian standstill and spread of Native American founders. PLoS One. 2007;2:e829. doi: 10.1371/journal.pone.0000829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. The Y Chromosome Consortium. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 2002;12:339–348. doi: 10.1101/gr.217602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Torres MM, Bravi CM, Bortolini MC, Duque C, Callegari-Jacques S, Ortiz D, Bedoya G, Groot de Restrepo H, Ruiz-Linares A. A revertant of the major founder Native American haplogroup C common in populations from northern South America. Am J Hum Biol. 2006;18:59–65. doi: 10.1002/ajhb.20461. [DOI] [PubMed] [Google Scholar]
  93. Torroni A, Schurr TG, Yang C-C, Szathmary EJE, Williams RC, Schanfield MS, Troup GA, Knowler WC, Lawrence DN, Weiss KM, et al. Native American mitochondrial DNA analysis indicates that the Amerind and the Nadene populations were founded by two independent migrations. Genetics. 1992;130:153–162. doi: 10.1093/genetics/130.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Torroni A, Schurr TG, Cabell MF, Brown MD, Neel JV, Larsen M, Smith DG, Vullo CM, Wallace DC. Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet. 1993;53:563–590. [PMC free article] [PubMed] [Google Scholar]
  95. Toscanini U, Gusmão L, Berardi G, Amorim A, Carracedo A, Salas A, Raimondi E. Y chromosome micro-satellite genetic variation in two Native American populations from Argentina: Population stratification and mutation data. Forensic Sci Int Genet. 2008;2:274–280. doi: 10.1016/j.fsigen.2008.03.001. [DOI] [PubMed] [Google Scholar]
  96. Toscanini U, Gusmão L, Berardi G, Gomes V, Amorim A, Salas A, Raimondi E. Male lineages in South American native groups: Evidence of M19 traveling south. Am J Phys Anthropol. 2011;146:188–196. doi: 10.1002/ajpa.21562. [DOI] [PubMed] [Google Scholar]
  97. Underhill PA, Jin L, Zemans R, Oefner PJ, Cavalli-Sforza LL. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc Natl Acad Sci USA. 1996;93:196–200. doi: 10.1073/pnas.93.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 1997;7:996–1005. doi: 10.1101/gr.7.10.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, Oefner PJ, Cavalli-Sforza LL. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet. 2001;65:43–62. doi: 10.1046/j.1469-1809.2001.6510043.x. [DOI] [PubMed] [Google Scholar]
  100. Vallinoto AC, Cayres-Vallinoto IM, Ribeiro Dos Santos ÂKC, Zago MA, Santos SE, Guerreiro JF. Heterogeneity of Y chromosome markers among Brazilian Amerindians. Am J Hum Biol. 1999;11:481–487. doi: 10.1002/(SICI)1520-6300(1999)11:4<481::AID-AJHB7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  101. Vona G, Falchi A, Moral P, Calò CM, Varesi L. Mitochondrial sequence variation in the Guahibo Amerindian population from Venezuela. Am J Phys Anthropol. 2005;127:361–369. doi: 10.1002/ajpa.20070. [DOI] [PubMed] [Google Scholar]
  102. Ward RH, Salzano FM, Bonatto SL, Hutz MH, Coimbra CEA, Santos RV. Mitochondrial DNA polymorphism in three Brazilian Indian tribes. Am J Hum Biol. 1996;8:317–323. doi: 10.1002/(SICI)1520-6300(1996)8:3<317::AID-AJHB2>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  103. Weir BS. The second National Research Council report on forensic DNA evidence. Am J Hum Genet. 1996;59:497–500. [PMC free article] [PubMed] [Google Scholar]
  104. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. doi: 10.1111/j.1558-5646.1984.tb05657.x. [DOI] [PubMed] [Google Scholar]
  105. Williams SR, Chagnon NA, Spielman RS. Nuclear and mitochondrial genetic variation in the Yanomamo: A test case for ancient DNA studies of prehistoric populations. Am J Phys Anthropol. 2002;117:246–259. doi: 10.1002/ajpa.10035. [DOI] [PubMed] [Google Scholar]
  106. Yang NN, Mazières S, Bravi C, Ray N, Wang S, Burley MW, Bedoya G, Rojas W, Parra MV, Molina JA, et al. Contrasting patterns of nuclear and mtDNA diversity in Native American populations. Ann Hum Genet. 2010;74:525–538. doi: 10.1111/j.1469-1809.2010.00608.x. [DOI] [PubMed] [Google Scholar]
  107. Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF. High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol Biol Evol. 2004;21:164–175. doi: 10.1093/molbev/msh009. [DOI] [PubMed] [Google Scholar]

Internet Resources

  1. PASW Statistics 18, http://www.spss.com (June 10, 2011).
  2. Pubmed, http://www.ncbi.nlm.nih.gov/pubmed/ (June 10, 2011).
  3. Y Chromosome Haplotype Reference Database, http://www.yhrd.org/ (June 10, 2011).
  4. Lewis MP. Ethnologue: Languages of the World. 16th edition. SIL International; Dallas: 2009. http://www.ethnologue.com/ [Google Scholar]

Articles from Genetics and Molecular Biology are provided here courtesy of Sociedade Brasileira de Genética

RESOURCES