Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):m874. doi: 10.1107/S1600536812023872

Aqua[1-(pyridin-2-yl)ethanone oximato][1-(2-pyridin-2-yl)ethanone oxime]­copper(II) perchlorate mono­hydrate

Baoyun Zhong a, Shengli Li b, Guifang Chen b,*
PMCID: PMC3393154  PMID: 22807722

Abstract

In the title compound, [Cu(C7H7N2O)(C7H8N2O)(H2O)]ClO4·H2O, the CuII ion is five-coordinated by the N atoms from the 1-(pyridin-2-yl)ethanone oximate and 1-(pyridin-2-yl)ethan­one oxime ligands and by the water O atom in a distorted square-pyramidal geometry. The two organic ligands are linked by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules and ions are linked by O—H⋯O hydrogen-bonding inter­actions, forming chains along the a axis. The perchlorate O atoms are disordered in a 0.58 (2):0.42 (2) ratio.

Related literature  

For the coordination chemistry of oximes, see: Chaudhuri (2003); Pavlishchuk et al. (2003). For related structures, see: Qiu et al. (2011); Wu & Wu (2008); Zuo et al. (2007). For the properties of related complexes, see: Davidson et al. (2007); Clerac et al. (2002). graphic file with name e-68-0m874-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C7H7N2O)(C7H8N2O)(H2O)]ClO4·H2O

  • M r = 470.32

  • Monoclinic, Inline graphic

  • a = 6.3526 (7) Å

  • b = 15.7199 (14) Å

  • c = 9.8235 (9) Å

  • β = 101.235 (1)°

  • V = 962.20 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.39 mm

Data collection  

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.587, T max = 0.626

  • 4732 measured reflections

  • 2284 independent reflections

  • 2062 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.00

  • 2284 reflections

  • 292 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 0.00 (2)

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023872/aa2060sup1.cif

e-68-0m874-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023872/aa2060Isup2.hkl

e-68-0m874-Isup2.hkl (112.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.63 2.421 (7) 163
O3—H3C⋯O2i 0.85 1.92 2.757 (6) 170
O3—H3D⋯O8i 0.85 1.82 2.658 (8) 170
O8—H8C⋯O6ii 0.85 1.86 2.660 (7) 157
O8—H8D⋯O4iii 0.85 2.11 2.862 (7) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

There is a new interest in the coordination chemistry of oximes (Davidson et al., 2007; Pavlishchuk et al., 2003; Chaudhuri, 2003). 2-pyridyl oximes are a subclass of oximes whose anions are versatile ligands for a variety of research objectives and have been key ligands in several areas of molecular magnetism, including single-molecule and single-chain magnets (Clerac et al., 2002).

In the title complex (Fig. 1) the Cu2+ center is five-coordinated by N atoms from two 1-(pyridin-2-yl)ethanone oxime ligands (one of them is deprotonated) and one water molecule. The two 1-(pyridin-2-yl)ethanone oxime ligands are coordinated to copper to form two five-membered CuC2N2 rings and a strong intramolecular hydrogen bond exists between the OH group and the negatively charged oxygen of the other ligand which is shorter than reported in the literature (Qiu et al., 2011; Wu et al. 2008). The copper atom adopts a distorted 4+1 square-pyramidal coordination mode with the distortion parameter being 0.005, which is smaller than the values reported in the literature (Qiu et al., 2011; Wu et al., 2008). Another water molecule and the perchlorate anion are not coordinated but they take part in the formation of H-bonds (Table 1). The perclorate O atoms are disordered between two orientations around the central Cl atom with the occupancies 0.42 (2) (O4/O7) and 0.58 (2) (O4A/O7A).

Experimental

A solution of Cu(ClO4)2 (0.1311 g, 0.5 mmol) in H2O (10 ml) was added to a solution of 1-(pyridin-2-yl)ethanone oxime (0.068 g, 0.5 mmol) in MeCN (10 ml). After 0.5 h stirring, solid NaOAc (0.082 g, 1 mmol) was added slowly, and the reaction mixture was kept under magnetic stirring for another 6h. A small quantity of undissolved material was removed by filtration and the solution was left to slowly evaporate, and after one month, green crystals suitable for X-ray diffraction were obtained. (20.5%, m.p. 310-315 K). FTIR (KBr) v (cm-l): 3448 (O—H); 1597, (Cδb N); 2917, 1437, (C—H); 1157, 1177, 1260 (N—O).

Refinement

All H atoms were placed in geometrically idealized positions [C—H 0.96 (methyl), C—H 0.93 (pyridyl) O—H 0.85 Å)and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq or 1.5Ueq(C), Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C7H7N2O)(C7H8N2O)(H2O)]ClO4·H2O F(000) = 482
Mr = 470.32 Dx = 1.623 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 2353 reflections
a = 6.3526 (7) Å θ = 2.5–24.1°
b = 15.7199 (14) Å µ = 1.32 mm1
c = 9.8235 (9) Å T = 298 K
β = 101.235 (1)° Block, green
V = 962.20 (16) Å3 0.45 × 0.40 × 0.39 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer 2284 independent reflections
Radiation source: fine-focus sealed tube 2062 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
phi and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.587, Tmax = 0.626 k = −18→18
4732 measured reflections l = −9→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0657P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
2284 reflections Δρmax = 0.31 e Å3
292 parameters Δρmin = −0.36 e Å3
2 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.90524 (7) 0.78796 (3) 0.51950 (6) 0.04434 (19)
N1 1.0620 (8) 0.8673 (3) 0.4096 (5) 0.0487 (11)
N2 0.7645 (8) 0.8981 (3) 0.5462 (5) 0.0529 (11)
N3 0.9979 (8) 0.6665 (3) 0.4862 (5) 0.0501 (11)
N4 0.7118 (8) 0.7233 (3) 0.6158 (5) 0.0559 (12)
O1 0.6121 (8) 0.9078 (3) 0.6241 (5) 0.0749 (13)
H1 0.5875 0.8617 0.6568 0.112*
O2 0.5748 (8) 0.7602 (3) 0.6854 (6) 0.0786 (14)
O3 1.1616 (7) 0.7948 (2) 0.7173 (4) 0.0574 (10)
H3C 1.2907 0.7810 0.7164 0.069*
H3D 1.1287 0.7759 0.7916 0.069*
O4 0.644 (5) 0.6788 (19) 0.031 (3) 0.173 (11) 0.42 (2)
O5 0.697 (5) 0.7657 (16) 0.225 (3) 0.113 (9) 0.42 (2)
O6 0.362 (4) 0.7125 (19) 0.129 (3) 0.156 (12) 0.42 (2)
O7 0.612 (4) 0.6234 (11) 0.239 (2) 0.133 (9) 0.42 (2)
O4A 0.616 (3) 0.7497 (16) 0.277 (2) 0.120 (7) 0.58 (2)
O5A 0.421 (4) 0.6442 (16) 0.159 (2) 0.183 (10) 0.58 (2)
O6A 0.776 (3) 0.6580 (10) 0.1461 (18) 0.140 (8) 0.58 (2)
O7A 0.530 (3) 0.7535 (10) 0.0400 (16) 0.146 (7) 0.58 (2)
O8 0.0118 (15) 0.7456 (7) 0.9393 (8) 0.149 (3)
H8C 0.1086 0.7216 0.9990 0.179*
H8D −0.1035 0.7468 0.9708 0.179*
Cl1 0.5869 (3) 0.69941 (11) 0.15550 (19) 0.0719 (5)
C1 1.2136 (12) 0.8510 (4) 0.3400 (8) 0.073 (2)
H1A 1.2607 0.7951 0.3381 0.088*
C2 1.3084 (13) 0.9117 (4) 0.2689 (9) 0.077 (2)
H2 1.4162 0.8970 0.2213 0.093*
C3 1.2380 (11) 0.9941 (4) 0.2710 (7) 0.0660 (17)
H3 1.2958 1.0365 0.2234 0.079*
C4 1.0826 (10) 1.0129 (3) 0.3439 (6) 0.0552 (14)
H4 1.0358 1.0688 0.3478 0.066*
C5 0.9947 (9) 0.9500 (3) 0.4114 (5) 0.0426 (11)
C6 0.8256 (9) 0.9661 (3) 0.4914 (6) 0.0494 (13)
C7 0.7378 (12) 1.0516 (4) 0.5062 (8) 0.0723 (18)
H7A 0.7683 1.0679 0.6022 0.108*
H7B 0.5854 1.0509 0.4730 0.108*
H7C 0.8027 1.0916 0.4530 0.108*
C8 1.1394 (14) 0.6393 (5) 0.4171 (8) 0.070 (2)
H8 1.2088 0.6797 0.3724 0.084*
C9 1.1956 (15) 0.5537 (4) 0.4048 (9) 0.085 (2)
H9 1.2981 0.5373 0.3542 0.102*
C10 1.0912 (16) 0.4959 (4) 0.4713 (9) 0.088 (2)
H10 1.1217 0.4382 0.4666 0.106*
C11 0.9453 (15) 0.5222 (4) 0.5433 (9) 0.079 (2)
H11 0.8756 0.4826 0.5892 0.095*
C12 0.8964 (13) 0.6082 (3) 0.5501 (6) 0.0569 (17)
C13 0.7394 (12) 0.6412 (4) 0.6278 (8) 0.0603 (18)
C14 0.6098 (15) 0.5892 (6) 0.7110 (10) 0.094 (3)
H14A 0.4660 0.5828 0.6593 0.141*
H14B 0.6064 0.6176 0.7971 0.141*
H14C 0.6743 0.5341 0.7296 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0416 (3) 0.0393 (3) 0.0582 (3) 0.0006 (4) 0.0246 (2) 0.0052 (3)
N1 0.052 (3) 0.040 (2) 0.060 (3) 0.002 (2) 0.029 (2) 0.001 (2)
N2 0.053 (3) 0.050 (3) 0.065 (3) 0.010 (2) 0.033 (2) 0.000 (2)
N3 0.056 (3) 0.043 (2) 0.054 (3) −0.001 (2) 0.017 (2) 0.002 (2)
N4 0.048 (3) 0.060 (3) 0.065 (3) −0.003 (2) 0.023 (2) 0.008 (2)
O1 0.074 (3) 0.067 (3) 0.102 (3) 0.015 (2) 0.062 (3) 0.006 (2)
O2 0.059 (3) 0.080 (3) 0.111 (4) 0.003 (3) 0.051 (3) 0.021 (3)
O3 0.042 (2) 0.069 (2) 0.064 (3) 0.0020 (17) 0.0151 (19) −0.0034 (18)
O4 0.19 (3) 0.19 (3) 0.14 (2) 0.02 (2) 0.04 (2) −0.020 (19)
O5 0.115 (19) 0.083 (10) 0.13 (2) −0.021 (12) −0.001 (13) 0.023 (12)
O6 0.128 (18) 0.16 (2) 0.17 (2) 0.042 (17) 0.002 (16) −0.028 (18)
O7 0.138 (18) 0.101 (12) 0.141 (16) −0.011 (11) −0.019 (13) 0.009 (10)
O4A 0.108 (14) 0.133 (15) 0.110 (13) 0.037 (11) 0.000 (8) −0.033 (11)
O5A 0.18 (2) 0.172 (18) 0.198 (19) −0.056 (18) 0.038 (16) 0.016 (16)
O6A 0.143 (13) 0.147 (13) 0.135 (14) 0.077 (11) 0.041 (10) −0.022 (10)
O7A 0.187 (16) 0.123 (11) 0.120 (11) 0.013 (11) 0.006 (11) 0.038 (9)
O8 0.124 (6) 0.226 (9) 0.108 (5) 0.001 (7) 0.051 (5) 0.048 (6)
Cl1 0.0737 (12) 0.0706 (10) 0.0779 (11) 0.0041 (9) 0.0309 (9) −0.0088 (8)
C1 0.085 (5) 0.049 (3) 0.102 (6) 0.009 (3) 0.057 (4) 0.009 (3)
C2 0.079 (5) 0.066 (4) 0.107 (5) 0.002 (4) 0.067 (4) 0.017 (4)
C3 0.069 (4) 0.062 (4) 0.075 (4) −0.010 (3) 0.035 (3) 0.020 (3)
C4 0.059 (4) 0.039 (3) 0.069 (4) −0.003 (2) 0.017 (3) 0.012 (2)
C5 0.045 (3) 0.037 (2) 0.047 (3) 0.000 (2) 0.015 (2) 0.002 (2)
C6 0.050 (3) 0.041 (3) 0.063 (3) 0.006 (2) 0.023 (3) 0.003 (2)
C7 0.080 (5) 0.058 (3) 0.086 (4) 0.025 (3) 0.033 (4) −0.001 (3)
C8 0.090 (6) 0.048 (4) 0.082 (5) 0.001 (4) 0.040 (4) 0.005 (3)
C9 0.101 (6) 0.054 (4) 0.107 (6) 0.011 (4) 0.039 (5) −0.006 (4)
C10 0.119 (7) 0.044 (3) 0.099 (5) 0.000 (4) 0.015 (5) −0.005 (4)
C11 0.092 (6) 0.047 (3) 0.093 (6) −0.019 (4) 0.004 (5) 0.009 (3)
C12 0.060 (3) 0.047 (3) 0.059 (4) −0.010 (3) 0.000 (3) 0.006 (3)
C13 0.054 (4) 0.055 (4) 0.068 (4) −0.012 (3) 0.003 (3) 0.018 (3)
C14 0.087 (5) 0.083 (5) 0.119 (7) −0.025 (4) 0.035 (5) 0.035 (5)

Geometric parameters (Å, º)

Cu1—N4 1.973 (5) C1—C2 1.387 (8)
Cu1—N2 1.989 (4) C1—H1A 0.9300
Cu1—N1 2.033 (5) C2—C3 1.372 (9)
Cu1—N3 2.043 (5) C2—H2 0.9300
Cu1—O3 2.282 (4) C3—C4 1.360 (8)
N1—C1 1.311 (8) C3—H3 0.9300
N1—C5 1.370 (7) C4—C5 1.369 (7)
N2—C6 1.291 (7) C4—H4 0.9300
N2—O1 1.355 (6) C5—C6 1.472 (7)
N3—C8 1.300 (9) C6—C7 1.472 (7)
N3—C12 1.345 (7) C7—H7A 0.9600
N4—C13 1.305 (7) C7—H7B 0.9600
N4—O2 1.340 (6) C7—H7C 0.9600
O1—H1 0.8200 C8—C9 1.403 (10)
O3—H3C 0.8500 C8—H8 0.9300
O3—H3D 0.8500 C9—C10 1.364 (12)
O4—Cl1 1.38 (2) C9—H9 0.9300
O5—Cl1 1.36 (3) C10—C11 1.336 (13)
O6—Cl1 1.42 (3) C10—H10 0.9300
O7—Cl1 1.438 (19) C11—C12 1.392 (9)
O4A—Cl1 1.414 (18) C11—H11 0.9300
O5A—Cl1 1.371 (18) C12—C13 1.463 (11)
O6A—Cl1 1.385 (13) C13—C14 1.509 (9)
O7A—Cl1 1.407 (13) C14—H14A 0.9600
O8—H8C 0.8501 C14—H14B 0.9600
O8—H8D 0.8500 C14—H14C 0.9600
N4—Cu1—N2 92.72 (19) C1—C2—H2 121.1
N4—Cu1—N1 170.52 (19) C4—C3—C2 119.1 (5)
N2—Cu1—N1 79.4 (2) C4—C3—H3 120.5
N4—Cu1—N3 79.7 (2) C2—C3—H3 120.5
N2—Cu1—N3 170.2 (2) C3—C4—C5 120.3 (5)
N1—Cu1—N3 107.58 (19) C3—C4—H4 119.9
N4—Cu1—O3 91.35 (19) C5—C4—H4 119.9
N2—Cu1—O3 96.39 (18) C4—C5—N1 121.5 (5)
N1—Cu1—O3 94.67 (18) C4—C5—C6 122.9 (5)
N3—Cu1—O3 90.01 (17) N1—C5—C6 115.6 (4)
C1—N1—C5 117.1 (5) N2—C6—C5 113.0 (4)
C1—N1—Cu1 130.0 (4) N2—C6—C7 124.4 (5)
C5—N1—Cu1 112.9 (3) C5—C6—C7 122.6 (5)
C6—N2—O1 116.6 (4) C6—C7—H7A 109.5
C6—N2—Cu1 119.1 (4) C6—C7—H7B 109.5
O1—N2—Cu1 124.2 (4) H7A—C7—H7B 109.5
C8—N3—C12 117.6 (5) C6—C7—H7C 109.5
C8—N3—Cu1 129.9 (4) H7A—C7—H7C 109.5
C12—N3—Cu1 112.5 (4) H7B—C7—H7C 109.5
C13—N4—O2 118.2 (5) N3—C8—C9 125.0 (7)
C13—N4—Cu1 117.9 (5) N3—C8—H8 117.5
O2—N4—Cu1 123.3 (4) C9—C8—H8 117.5
N2—O1—H1 109.5 C10—C9—C8 116.3 (8)
Cu1—O3—H3C 120.6 C10—C9—H9 121.9
Cu1—O3—H3D 117.4 C8—C9—H9 121.9
H3C—O3—H3D 108.6 C11—C10—C9 119.9 (6)
H8C—O8—H8D 108.5 C11—C10—H10 120.0
O5—Cl1—O4 115.1 (18) C9—C10—H10 120.0
O5A—Cl1—O6A 112.7 (14) C10—C11—C12 120.7 (7)
O5A—Cl1—O7A 108.9 (13) C10—C11—H11 119.7
O6A—Cl1—O7A 108.6 (11) C12—C11—H11 119.6
O5A—Cl1—O4A 108.1 (14) N3—C12—C11 120.5 (8)
O6A—Cl1—O4A 110.2 (10) N3—C12—C13 116.1 (5)
O7A—Cl1—O4A 108.4 (11) C11—C12—C13 123.4 (6)
O5—Cl1—O6 112.4 (16) N4—C13—C12 113.4 (6)
O4—Cl1—O6 107.6 (18) N4—C13—C14 120.4 (7)
O5—Cl1—O7 111.4 (13) C12—C13—C14 126.2 (6)
O4—Cl1—O7 106.8 (16) C13—C14—H14A 109.5
O6—Cl1—O7 102.6 (17) C13—C14—H14B 109.5
N1—C1—C2 124.3 (6) H14A—C14—H14B 109.5
N1—C1—H1A 117.9 C13—C14—H14C 109.5
C2—C1—H1A 117.9 H14A—C14—H14C 109.5
C3—C2—C1 117.8 (6) H14B—C14—H14C 109.5
C3—C2—H2 121.1
N2—Cu1—N1—C1 −179.9 (7) C1—N1—C5—C4 −0.2 (8)
N3—Cu1—N1—C1 −7.0 (7) Cu1—N1—C5—C4 179.6 (4)
O3—Cu1—N1—C1 84.5 (6) C1—N1—C5—C6 −179.5 (6)
N2—Cu1—N1—C5 0.3 (4) Cu1—N1—C5—C6 0.3 (6)
N3—Cu1—N1—C5 173.2 (4) O1—N2—C6—C5 178.7 (5)
O3—Cu1—N1—C5 −95.3 (4) Cu1—N2—C6—C5 1.3 (7)
N4—Cu1—N2—C6 −175.7 (5) O1—N2—C6—C7 −1.2 (9)
N1—Cu1—N2—C6 −1.0 (5) Cu1—N2—C6—C7 −178.6 (5)
O3—Cu1—N2—C6 92.6 (5) C4—C5—C6—N2 179.7 (5)
N4—Cu1—N2—O1 7.2 (5) N1—C5—C6—N2 −1.0 (7)
N1—Cu1—N2—O1 −178.1 (5) C4—C5—C6—C7 −0.4 (8)
O3—Cu1—N2—O1 −84.5 (5) N1—C5—C6—C7 178.9 (6)
N4—Cu1—N3—C8 178.0 (7) C12—N3—C8—C9 −0.4 (12)
N1—Cu1—N3—C8 4.3 (7) Cu1—N3—C8—C9 177.8 (6)
O3—Cu1—N3—C8 −90.6 (7) N3—C8—C9—C10 0.0 (13)
N4—Cu1—N3—C12 −3.7 (4) C8—C9—C10—C11 −0.2 (13)
N1—Cu1—N3—C12 −177.5 (4) C9—C10—C11—C12 0.7 (12)
O3—Cu1—N3—C12 87.6 (4) C8—N3—C12—C11 0.9 (10)
N2—Cu1—N4—C13 −179.8 (5) Cu1—N3—C12—C11 −177.6 (5)
N3—Cu1—N4—C13 6.4 (5) C8—N3—C12—C13 179.5 (7)
O3—Cu1—N4—C13 −83.3 (5) Cu1—N3—C12—C13 1.0 (7)
N2—Cu1—N4—O2 −9.3 (5) C10—C11—C12—N3 −1.1 (11)
N3—Cu1—N4—O2 176.9 (5) C10—C11—C12—C13 −179.6 (7)
O3—Cu1—N4—O2 87.2 (5) O2—N4—C13—C12 −178.6 (5)
C5—N1—C1—C2 −0.1 (11) Cu1—N4—C13—C12 −7.5 (8)
Cu1—N1—C1—C2 −179.9 (6) O2—N4—C13—C14 3.6 (10)
N1—C1—C2—C3 −0.4 (13) Cu1—N4—C13—C14 174.7 (6)
C1—C2—C3—C4 1.1 (12) N3—C12—C13—N4 4.1 (9)
C2—C3—C4—C5 −1.4 (10) C11—C12—C13—N4 −177.4 (6)
C3—C4—C5—N1 1.0 (8) N3—C12—C13—C14 −178.3 (7)
C3—C4—C5—C6 −179.7 (6) C11—C12—C13—C14 0.3 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.63 2.421 (7) 163
O3—H3C···O2i 0.85 1.92 2.757 (6) 170
O3—H3D···O8i 0.85 1.82 2.658 (8) 170
O8—H8C···O6ii 0.85 1.86 2.660 (7) 157
O8—H8D···O4iii 0.85 2.11 2.862 (7) 148

Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2060).

References

  1. Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–190.
  2. Clerac, R., Miyasaka, H., Yamashita, M. & Coulon, C. (2002). J Am Chem Soc. 124, 12837–12844. [DOI] [PubMed]
  3. Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2007). Polyhedron. 26, 975–980.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Pavlishchuk, V. V., Kolotilov, S. V., Addison, A. W., Prushan, M. J., Schollmeyer, D., Thompson, L. K., Weyhermuller, T. & Goreshnik, E. A. (2003). Dalton Trans. pp. 1587–1595.
  7. Qiu, X., Li, L. & Li, D. (2011). Acta Cryst. E67, m1810–m1811. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
  11. Wu, G. & Wu, D. (2008). Acta Cryst. E64, m828. [DOI] [PMC free article] [PubMed]
  12. Zuo, J., Dou, J., Li, D., Wang, D. & Sun, Y. (2007). Acta Cryst. E63, m3183–m3184.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812023872/aa2060sup1.cif

e-68-0m874-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023872/aa2060Isup2.hkl

e-68-0m874-Isup2.hkl (112.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES