Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):m884–m885. doi: 10.1107/S1600536812024889

Aqua­(2,2′-bipyridine-κ2 N,N′)(2-methyl­malonato-κ2 O 1,O 3)copper(II) dihydrate

P Manochitra a, N Manikandan b, S Murugavel c,*, R Sreeshailam a, P Sambasiva Rao a
PMCID: PMC3393161  PMID: 22807729

Abstract

In the title compound, [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O, the CuII ion displays a slightly distorted square-pyramidal coordination. The water mol­ecule at the apical position shows a long bond [Cu—O = 2.276 (2) Å]. The basal plane is formed by two N atoms of the 2,2′-bipyridine ligand and two carboxyl­ate O atoms from a malonate group. The five-membered chelate ring is almost planar [maximum deviation = −0.006 (2) Å], while the six-membered chelate ring defined by the malonate ligand adopts a distorted boat conformation. In the crystal, CuII complex mol­ecules and lattice water mol­ecules are connected by O—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by π–π inter­actions [centroid–centroid distances = 3.563 (2)–3.828 (2) Å].

Related literature  

For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998); Suresh & Bhadbhade (1997). For related structures, see: Gasque et al. (1998); Cui et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).graphic file with name e-68-0m884-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O

  • M r = 389.84

  • Monoclinic, Inline graphic

  • a = 10.7588 (7) Å

  • b = 7.4761 (6) Å

  • c = 20.1029 (13) Å

  • β = 90.917 (6)°

  • V = 1616.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.17 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.699, T max = 0.790

  • 9120 measured reflections

  • 3782 independent reflections

  • 2771 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.119

  • S = 1.05

  • 3782 reflections

  • 242 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024889/bt5931sup1.cif

e-68-0m884-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024889/bt5931Isup2.hkl

e-68-0m884-Isup2.hkl (181.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.59 3.457 (4) 155
O3—H3A⋯O4ii 0.82 (3) 1.97 (4) 2.775 (3) 170 (3)
O3—H3B⋯O6iii 0.85 (5) 1.90 (5) 2.744 (4) 173 (4)
O6—H6A⋯O5iv 0.84 (2) 1.96 (2) 2.787 (3) 168 (4)
O6—H6B⋯O5v 0.84 (1) 1.97 (1) 2.800 (4) 170 (4)
O7—H7A⋯O4iv 0.83 (1) 2.12 (2) 2.907 (4) 158 (4)
O7—H7B⋯O6vi 0.84 (1) 2.10 (1) 2.932 (5) 170 (4)
C2—H2⋯O7vii 0.93 2.50 3.256 (5) 139
C12—H12⋯O4ii 0.98 2.47 3.300 (5) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

PM thanks Pondicherry University for a fellowship. The authors gratefully acknowledge the single-crystal XRD facility (DST-FIST), Department of Chemistry, Pondicherry University, for the XRD data.

supplementary crystallographic information

Comment

The copper(II)—malonate complexes with suitable N-heterocyclic auxiliary ligands are of interest because the metal-N-heterocyclic chelate ring could influence the Cu—O(carboxyl) bond lengths and exhibits some degree of 'metalloaromaticity' (Suresh & Bhadbhade, 1997). On the other hand, self-assembly processes involving metal ions and organic ligands has attracted increasing attention for the development of novel functional materials with desired properties (Braga et al., 1998). In continuation of the structural studies of metal complexes of these ligands, the crystal structure of the title compound was determined.

Fig. 1. shows a displacement ellipsoid plot of the title complex. The CuIIion displays a slightly distorted quadratic pyramidal geometry and is coordinated to two N atoms of a 2,2'-bipyridine ligand and two carboxylate O atoms from a malonate group in the basal plane, and to a water molecule in the apical position [Cu1–O3 = 2.276 (2) Å]. The Cu1II ion is displaced by -0.2382 (4) Å from the basal plane (N1/N2/O1/O2) towards the apical position. The O3 atom of the water molecule coordinated in the apical position deviates from this basal plane by 2.514 (2) Å. A similar coordination behaviour is observed in a similar structure (Gasque et al., 1998), in which Cu1 deviates by 0.239 (2) Å and O3 atom by 2.533 (3) Å from the corresponding basal plane. The angle subtended by the pyridine ligand at the metal atom is far from the ideal value of 90° [81.0 (1)° for N1—Cu1—N2]. The bond distances Cu1—N1 = 2.004 (3), Cu1—N2 = 2.001 (1), Cu1—O1 = 1.907 (2) and Cu1—O2 = 1.919 (2) Å agree well with those reported for similar structures (Gasque et al., 1998; Cui et al., 2005).

The five-membered chelate ring (N1/N2/C5/C6/Cu1) is almost planar [maximum deviation = -0.006 (2) Å for atom N1], while the six-membered chelate ring defined by the malonate ligand (O1/O2/C11/C12/C13/Cu1) adopts a slightly distorted boat conformation as indicated by the puckering parameters (Cremer & Pople, 1975): Q = 0.580 (3) Å, θ = 81.8 (3)° and φ = 187.9 (3)°.

The crystal packing is stabilized by extensive intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) between the copper complex and uncordinated water molecules (Fig. 2). The crystal packing is further stabilized by π—π interactions with Cg1—Cg1viii, Cg1—Cg3viii, Cg3—Cg1viii, Cg3—Cg4viii, Cg4—Cg3viii, Cg3—Cg4i and Cg4—Cg3i seperations of 3.563 (2), 3.828 (2), 3.828 (2), 3.805 (2), 3.805 (2) 3.720 (2) and 3.720 (2) Å (Cg1, Cg2, Cg3 and Cg4 are the centroids of Cu1/N1/N2/C5/C6 ring, Cu1/O1/O2/C11/C12/C13 ring, N1/C1–C5 pyridine ring and N2/C6–C10 pyridine ring, respectively, symmetry codes: (i) 1-x, 1-y, -z; (viii) 1-x, -y, -z).

Experimental

Basic copper(II) carbonate (1 mmol) was treated with an aqueous solution (10 ml) of methylmalonic acid (2 mmol) in a steam bath until the solid disappeared. The solution was then filtered and diluted to approximately 40 ml with water. An ethanol solution (10 ml) of 2,2'-bipyridine (2 mmol) was then added to above solution. The resultant clear-blue solution was warmed on a steam bath for 1 h. The volume was kept constant by periodic addition of water. Then the solution was filtered and allowed to stand at room temperature. Blue single crystals were obtained after 2 days. They were filtered, washed with water, ethanol and air dried.

Refinement

H atoms of the water molecules were located in a difference fourier map, and were refined with distance restraints of O—H = 0.84 (1) Å and H···H = 1.32 (1) Å. All other H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small cycles of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure showing O—H···O and C—H···O hydrogen bonds.

Crystal data

[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O F(000) = 804
Mr = 389.84 Dx = 1.602 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4366 reflections
a = 10.7588 (7) Å θ = 2.9–29.2°
b = 7.4761 (6) Å µ = 1.39 mm1
c = 20.1029 (13) Å T = 293 K
β = 90.917 (6)° Plate, blue
V = 1616.7 (2) Å3 0.25 × 0.23 × 0.17 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 3782 independent reflections
Radiation source: fine-focus sealed tube 2771 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
Detector resolution: 15.9821 pixels mm-1 θmax = 29.2°, θmin = 2.9°
ω scans h = −14→13
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→9
Tmin = 0.699, Tmax = 0.790 l = −25→26
9120 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4525P] where P = (Fo2 + 2Fc2)/3
3782 reflections (Δ/σ)max < 0.001
242 parameters Δρmax = 0.97 e Å3
6 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H6A 0.8000 (17) 0.941 (4) 0.244 (2) 0.084 (16)*
H6B 0.863 (3) 1.0935 (14) 0.242 (2) 0.078 (17)*
H7A 0.0996 (16) 0.899 (6) 0.1481 (16) 0.082 (17)*
H7B −0.019 (2) 0.932 (5) 0.1575 (13) 0.055 (13)*
H3A 0.383 (3) 0.381 (4) 0.1980 (18) 0.031 (9)*
H3B 0.501 (4) 0.415 (5) 0.196 (2) 0.070 (15)*
C1 0.2610 (3) 0.1725 (5) 0.02465 (17) 0.0410 (8)
H1 0.2129 0.1261 0.0586 0.049*
C2 0.2030 (3) 0.2200 (5) −0.03429 (18) 0.0466 (9)
H2 0.1177 0.2057 −0.0403 0.056*
C3 0.2754 (4) 0.2894 (5) −0.08420 (18) 0.0510 (10)
H3 0.2390 0.3233 −0.1245 0.061*
C4 0.4011 (4) 0.3084 (5) −0.07414 (16) 0.0419 (8)
H4 0.4504 0.3555 −0.1074 0.050*
C5 0.4537 (3) 0.2565 (4) −0.01396 (15) 0.0320 (7)
C6 0.5883 (3) 0.2680 (4) 0.00209 (14) 0.0307 (7)
C7 0.6786 (3) 0.3242 (4) −0.04174 (17) 0.0409 (8)
H7 0.6562 0.3641 −0.0841 0.049*
C8 0.8013 (4) 0.3203 (5) −0.02201 (19) 0.0497 (10)
H8 0.8629 0.3568 −0.0509 0.060*
C9 0.8320 (3) 0.2617 (5) 0.04121 (19) 0.0501 (10)
H9 0.9147 0.2564 0.0553 0.060*
C10 0.7384 (3) 0.2114 (5) 0.08301 (17) 0.0427 (8)
H10 0.7593 0.1757 0.1261 0.051*
C11 0.3250 (3) −0.0638 (4) 0.21041 (16) 0.0341 (7)
C12 0.4265 (3) −0.0215 (6) 0.26271 (17) 0.0460 (9)
H12 0.4210 0.1077 0.2703 0.055*
C13 0.5590 (3) −0.0537 (5) 0.23662 (17) 0.0365 (8)
C14 0.4053 (4) −0.1058 (6) 0.32924 (19) 0.0652 (12)
H14A 0.3256 −0.0697 0.3454 0.098*
H14B 0.4692 −0.0679 0.3600 0.098*
H14C 0.4075 −0.2336 0.3249 0.098*
N1 0.3835 (2) 0.1903 (3) 0.03522 (13) 0.0314 (6)
N2 0.6195 (2) 0.2117 (4) 0.06441 (13) 0.0316 (6)
O1 0.3381 (2) −0.0024 (3) 0.15174 (10) 0.0405 (6)
O2 0.58911 (19) 0.0276 (3) 0.18425 (11) 0.0406 (6)
O3 0.4394 (3) 0.3907 (3) 0.17161 (12) 0.0388 (6)
O4 0.2303 (2) −0.1436 (4) 0.22666 (13) 0.0523 (7)
O5 0.6349 (2) −0.1442 (3) 0.26946 (14) 0.0545 (7)
Cu1 0.47703 (3) 0.12714 (5) 0.118940 (18) 0.03071 (14)
O6 0.8720 (2) 0.9825 (4) 0.24144 (17) 0.0608 (8)
O7 0.0314 (3) 0.9009 (6) 0.12845 (16) 0.0828 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.046 (2) 0.045 (2) 0.0325 (18) −0.0036 (17) −0.0021 (16) 0.0004 (16)
C2 0.045 (2) 0.052 (2) 0.042 (2) 0.0005 (18) −0.0119 (17) −0.0050 (18)
C3 0.064 (3) 0.052 (2) 0.036 (2) 0.010 (2) −0.0168 (19) −0.0014 (18)
C4 0.059 (2) 0.0407 (19) 0.0263 (17) 0.0000 (18) 0.0008 (16) 0.0022 (15)
C5 0.0464 (18) 0.0261 (16) 0.0236 (15) 0.0001 (14) 0.0023 (14) −0.0029 (13)
C6 0.0469 (19) 0.0223 (15) 0.0229 (15) −0.0016 (14) 0.0024 (14) −0.0028 (13)
C7 0.055 (2) 0.0394 (19) 0.0282 (18) −0.0061 (17) 0.0058 (16) 0.0022 (15)
C8 0.052 (2) 0.054 (2) 0.043 (2) −0.0116 (19) 0.0184 (19) −0.0014 (19)
C9 0.0398 (19) 0.063 (3) 0.048 (2) −0.0080 (19) 0.0047 (17) 0.002 (2)
C10 0.0431 (19) 0.052 (2) 0.0329 (19) −0.0039 (17) −0.0006 (16) 0.0004 (17)
C11 0.0293 (16) 0.0436 (19) 0.0294 (17) 0.0002 (14) 0.0034 (13) 0.0054 (15)
C12 0.0388 (19) 0.065 (2) 0.0337 (19) −0.0006 (18) 0.0018 (16) 0.0082 (18)
C13 0.0286 (16) 0.0427 (19) 0.0381 (19) −0.0020 (15) −0.0024 (14) 0.0028 (16)
C14 0.047 (2) 0.109 (4) 0.039 (2) 0.006 (2) 0.0061 (19) 0.004 (2)
N1 0.0349 (14) 0.0313 (13) 0.0280 (14) −0.0010 (12) −0.0007 (12) −0.0020 (12)
N2 0.0322 (13) 0.0357 (15) 0.0271 (14) −0.0014 (12) 0.0021 (11) 0.0000 (12)
O1 0.0350 (12) 0.0594 (15) 0.0270 (12) −0.0117 (11) −0.0024 (10) 0.0077 (11)
O2 0.0300 (11) 0.0548 (15) 0.0372 (13) 0.0014 (11) 0.0044 (10) 0.0168 (12)
O3 0.0406 (14) 0.0477 (15) 0.0283 (13) 0.0007 (12) 0.0040 (12) −0.0040 (11)
O4 0.0416 (14) 0.0750 (19) 0.0404 (15) −0.0188 (13) 0.0052 (12) 0.0123 (13)
O5 0.0387 (13) 0.0645 (17) 0.0599 (18) 0.0040 (12) −0.0082 (13) 0.0288 (14)
Cu1 0.0315 (2) 0.0373 (3) 0.0233 (2) −0.00150 (17) 0.00136 (15) 0.00288 (16)
O6 0.0354 (15) 0.061 (2) 0.085 (2) 0.0009 (14) −0.0080 (15) 0.0136 (18)
O7 0.060 (2) 0.132 (3) 0.056 (2) 0.017 (2) −0.0158 (18) −0.026 (2)

Geometric parameters (Å, º)

C1—N1 1.338 (4) C11—O1 1.276 (4)
C1—C2 1.377 (5) C11—C12 1.537 (5)
C1—H1 0.9300 C12—C14 1.499 (5)
C2—C3 1.381 (5) C12—C13 1.545 (4)
C2—H2 0.9300 C12—H12 0.9800
C3—C4 1.372 (5) C13—O5 1.242 (4)
C3—H3 0.9300 C13—O2 1.263 (4)
C4—C5 1.383 (4) C14—H14A 0.9600
C4—H4 0.9300 C14—H14B 0.9600
C5—N1 1.348 (4) C14—H14C 0.9600
C5—C6 1.481 (4) N1—Cu1 2.004 (3)
C6—N2 1.359 (4) N2—Cu1 2.001 (2)
C6—C7 1.387 (4) O1—Cu1 1.907 (2)
C7—C8 1.373 (5) O2—Cu1 1.919 (2)
C7—H7 0.9300 O3—Cu1 2.276 (2)
C8—C9 1.379 (5) O3—H3A 0.82 (3)
C8—H8 0.9300 O3—H3B 0.85 (5)
C9—C10 1.374 (5) O6—H6A 0.836 (10)
C9—H9 0.9300 O6—H6B 0.835 (10)
C10—N2 1.328 (4) O7—H7A 0.829 (10)
C10—H10 0.9300 O7—H7B 0.839 (10)
C11—O4 1.229 (4)
N1—C1—C2 122.9 (3) C14—C12—H12 105.3
N1—C1—H1 118.6 C11—C12—H12 105.3
C2—C1—H1 118.6 C13—C12—H12 105.3
C1—C2—C3 118.0 (3) O5—C13—O2 122.0 (3)
C1—C2—H2 121.0 O5—C13—C12 120.4 (3)
C3—C2—H2 121.0 O2—C13—C12 117.3 (3)
C4—C3—C2 119.9 (3) C12—C14—H14A 109.5
C4—C3—H3 120.1 C12—C14—H14B 109.5
C2—C3—H3 120.1 H14A—C14—H14B 109.5
C3—C4—C5 119.3 (3) C12—C14—H14C 109.5
C3—C4—H4 120.4 H14A—C14—H14C 109.5
C5—C4—H4 120.4 H14B—C14—H14C 109.5
N1—C5—C4 121.2 (3) C1—N1—C5 118.8 (3)
N1—C5—C6 114.8 (3) C1—N1—Cu1 126.2 (2)
C4—C5—C6 124.0 (3) C5—N1—Cu1 115.0 (2)
N2—C6—C7 121.0 (3) C10—N2—C6 118.9 (3)
N2—C6—C5 114.1 (3) C10—N2—Cu1 126.1 (2)
C7—C6—C5 124.8 (3) C6—N2—Cu1 115.0 (2)
C8—C7—C6 119.3 (3) C11—O1—Cu1 126.9 (2)
C8—C7—H7 120.3 C13—O2—Cu1 126.2 (2)
C6—C7—H7 120.3 Cu1—O3—H3A 112 (2)
C7—C8—C9 119.2 (3) Cu1—O3—H3B 108 (3)
C7—C8—H8 120.4 H3A—O3—H3B 103 (4)
C9—C8—H8 120.4 O1—Cu1—O2 93.10 (9)
C10—C9—C8 118.9 (4) O1—Cu1—N2 163.97 (10)
C10—C9—H9 120.6 O2—Cu1—N2 91.09 (10)
C8—C9—H9 120.6 O1—Cu1—N1 91.37 (10)
N2—C10—C9 122.7 (3) O2—Cu1—N1 165.47 (10)
N2—C10—H10 118.7 N2—Cu1—N1 81.04 (10)
C9—C10—H10 118.7 O1—Cu1—O3 97.61 (10)
O4—C11—O1 121.7 (3) O2—Cu1—O3 97.57 (10)
O4—C11—C12 120.1 (3) N2—Cu1—O3 97.17 (10)
O1—C11—C12 118.1 (3) N1—Cu1—O3 95.52 (10)
C14—C12—C11 114.0 (3) H6A—O6—H6B 105.1 (16)
C14—C12—C13 113.1 (3) H7A—O7—H7B 104.6 (16)
C11—C12—C13 112.7 (3)
N1—C1—C2—C3 −0.3 (5) C5—C6—N2—C10 178.0 (3)
C1—C2—C3—C4 0.3 (6) C7—C6—N2—Cu1 −177.7 (2)
C2—C3—C4—C5 0.3 (6) C5—C6—N2—Cu1 0.1 (3)
C3—C4—C5—N1 −0.9 (5) O4—C11—O1—Cu1 178.9 (2)
C3—C4—C5—C6 179.0 (3) C12—C11—O1—Cu1 4.1 (4)
N1—C5—C6—N2 −0.8 (4) O5—C13—O2—Cu1 165.5 (3)
C4—C5—C6—N2 179.3 (3) C12—C13—O2—Cu1 −20.5 (4)
N1—C5—C6—C7 177.0 (3) C11—O1—Cu1—O2 24.3 (3)
C4—C5—C6—C7 −3.0 (5) C11—O1—Cu1—N2 129.2 (4)
N2—C6—C7—C8 0.9 (5) C11—O1—Cu1—N1 −169.5 (3)
C5—C6—C7—C8 −176.7 (3) C11—O1—Cu1—O3 −73.8 (3)
C6—C7—C8—C9 −0.4 (5) C13—O2—Cu1—O1 −15.2 (3)
C7—C8—C9—C10 −1.0 (6) C13—O2—Cu1—N2 −179.7 (3)
C8—C9—C10—N2 2.1 (6) C13—O2—Cu1—N1 −122.9 (4)
O4—C11—C12—C14 7.4 (5) C13—O2—Cu1—O3 82.9 (3)
O1—C11—C12—C14 −177.6 (3) C10—N2—Cu1—O1 −114.8 (4)
O4—C11—C12—C13 138.1 (3) C6—N2—Cu1—O1 62.9 (5)
O1—C11—C12—C13 −47.0 (4) C10—N2—Cu1—O2 −9.6 (3)
C14—C12—C13—O5 1.2 (5) C6—N2—Cu1—O2 168.1 (2)
C11—C12—C13—O5 −129.9 (4) C10—N2—Cu1—N1 −177.3 (3)
C14—C12—C13—O2 −172.9 (3) C6—N2—Cu1—N1 0.4 (2)
C11—C12—C13—O2 56.0 (4) C10—N2—Cu1—O3 88.2 (3)
C2—C1—N1—C5 −0.4 (5) C6—N2—Cu1—O3 −94.1 (2)
C2—C1—N1—Cu1 179.6 (3) C1—N1—Cu1—O1 13.4 (3)
C4—C5—N1—C1 1.0 (5) C5—N1—Cu1—O1 −166.6 (2)
C6—C5—N1—C1 −178.9 (3) C1—N1—Cu1—O2 121.4 (4)
C4—C5—N1—Cu1 −179.0 (2) C5—N1—Cu1—O2 −58.7 (5)
C6—C5—N1—Cu1 1.1 (3) C1—N1—Cu1—N2 179.2 (3)
C9—C10—N2—C6 −1.6 (5) C5—N1—Cu1—N2 −0.8 (2)
C9—C10—N2—Cu1 176.0 (3) C1—N1—Cu1—O3 −84.4 (3)
C7—C6—N2—C10 0.1 (5) C5—N1—Cu1—O3 95.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.93 2.59 3.457 (4) 155
O3—H3A···O4ii 0.82 (3) 1.97 (4) 2.775 (3) 170 (3)
O3—H3B···O6iii 0.85 (5) 1.90 (5) 2.744 (4) 173 (4)
O6—H6A···O5iv 0.84 (2) 1.96 (2) 2.787 (3) 168 (4)
O6—H6B···O5v 0.84 (1) 1.97 (1) 2.800 (4) 170 (4)
O7—H7A···O4iv 0.83 (1) 2.12 (2) 2.907 (4) 158 (4)
O7—H7B···O6vi 0.84 (1) 2.10 (1) 2.932 (5) 170 (4)
C2—H2···O7vii 0.93 2.50 3.256 (5) 139
C12—H12···O4ii 0.98 2.47 3.300 (5) 142

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x, y+1, z; (v) −x+3/2, y+3/2, −z+1/2; (vi) x−1, y, z; (vii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5931).

References

  1. Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. [DOI] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850.
  6. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Suresh, E. & Bhadbhade, M. M. (1997). Acta Cryst. C53, 193–195.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024889/bt5931sup1.cif

e-68-0m884-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024889/bt5931Isup2.hkl

e-68-0m884-Isup2.hkl (181.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES