Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):m890. doi: 10.1107/S160053681202510X

Tetra­aqua­bis­[5-(pyridin-3-yl)tetra­zolido-κN 5]manganese(II) tetra­hydrate

Chen Qi a, Xiang He a, Min Shao b, Ming-Xing Li a,*
PMCID: PMC3393165  PMID: 22807733

Abstract

The title compound, [Mn(C6H4N5)2(H2O)4]·4H2O, was obtained by the solution reaction of MnCl2 and 3-(2H-tetra­zol-5-yl)pyridine. The MnII atom, located on an inversion center, shows a slightly distorted octa­hedral geometry and is coordinated by two pyridine N atoms from two 5-(pyridin-3-yl)tetra­zolide ligands occupying trans positions and four water mol­ecules. In the crystal, the mononuclear complex mol­ecules and solvent water mol­ecules are connected into a three-dimensional framework by O—H⋯N and O—H⋯O hydrogen bonds.

Related literature  

For the synthesis and crystal structure of the isotypic zinc(II) complex [Zn(C6H4N5)2(H2O)4]·4H2O, see: Mu et al. (2010).graphic file with name e-68-0m890-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(C6H4N5)2(H2O)4]·4H2O

  • M r = 491.35

  • Triclinic, Inline graphic

  • a = 8.137 (8) Å

  • b = 8.629 (8) Å

  • c = 8.761 (8) Å

  • α = 84.878 (10)°

  • β = 65.347 (8)°

  • γ = 72.571 (10)°

  • V = 533.0 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.922, T max = 0.934

  • 2785 measured reflections

  • 1850 independent reflections

  • 1712 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.080

  • S = 1.05

  • 1850 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202510X/gk2497sup1.cif

e-68-0m890-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202510X/gk2497Isup2.hkl

e-68-0m890-Isup2.hkl (91.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O4i 0.85 1.94 2.783 (3) 172
O1—H1A⋯N5ii 0.85 1.91 2.731 (3) 163
O2—H2A⋯O3iii 0.85 1.99 2.836 (3) 171
O2—H2B⋯O3iv 0.85 1.96 2.800 (3) 169
O3—H3B⋯O4 0.85 1.96 2.803 (3) 171
O3—H3A⋯N2 0.85 1.96 2.797 (3) 170
O4—H4B⋯N3v 0.85 2.03 2.878 (3) 177
O4—H4A⋯N4vi 0.85 2.00 2.849 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The project was supported by the National Natural Science Foundation of China (21171115), the Leading Academic Discipline Project (J50102) and the Innovation Program (12ZZ089) of Shanghai Municipal Education Commission, China.

supplementary crystallographic information

Comment

3-(2H-Tetrazol-5-yl)pyridine (3-Ptz) is a multifunctional ligand which possesses five potential coordinate nitrogen atoms. Recently Mu et al. (2010) reported that hydrothermal reaction of Zn(OAc)2 with 3-Ptz results in a mononuclear zinc complex [Zn(C6H4N5)2(H2O)4].4H2O. We were able to prepare an analogues manganese(II) compound, [Mn(C6H4N5)2(H2O)4].4H2O, by the solution reaction of MnCl2 with 3-Ptz in a basic H2O/ethanol solution. This compound is closely isostructural with the Zn complex reported by Mu et al. (2010)

Experimental

A mixture of MnCl2 (0.1 mmol), 3-Ptz (0.1 mmol), 1 ml NaOH solution (0.1 mol L-1) was added into 10 ml H2O/ethanol mixed solvent (1:1). After being stirred for twenty minutes, the mixture was filtered. The filtrate was left undisturbed for two days to give yellow block crystals with 35% yield based on 3-Ptz. Anal. calcd for C12H24MnN10O8 (%): C, 29.33; H, 4.92; N, 28.51. Found: C, 29.24; H, 4.83; N, 28.66. IR (KBr pellet, cm-1): 3400m, 1613m, 1588m, 1464m, 1426s, 1372m, 1153s, 1019m, 787s, 750s, 696s, 642m, 463m.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.85 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x, -y, -z].

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Mn(C6H4N5)2(H2O)4]·4H2O Z = 1
Mr = 491.35 F(000) = 255
Triclinic, P1 Dx = 1.531 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.137 (8) Å Cell parameters from 1565 reflections
b = 8.629 (8) Å θ = 2.5–27.3°
c = 8.761 (8) Å µ = 0.68 mm1
α = 84.878 (10)° T = 293 K
β = 65.347 (8)° Block, yellow
γ = 72.571 (10)° 0.15 × 0.10 × 0.10 mm
V = 533.0 (9) Å3

Data collection

Bruker APEXII CCD diffractometer 1850 independent reflections
Radiation source: fine-focus sealed tube 1712 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
phi and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −7→9
Tmin = 0.922, Tmax = 0.934 k = −6→10
2785 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2064P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1850 reflections Δρmax = 0.23 e Å3
143 parameters Δρmin = −0.32 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.063 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4972 (3) 0.8406 (3) 0.1955 (2) 0.0309 (5)
H1 0.3863 0.8330 0.2844 0.037*
C2 0.5378 (3) 0.7784 (2) 0.0396 (2) 0.0250 (4)
C3 0.7038 (3) 0.7881 (3) −0.0919 (2) 0.0312 (4)
H3 0.7369 0.7485 −0.1993 0.037*
C4 0.8196 (3) 0.8579 (3) −0.0606 (3) 0.0367 (5)
H4 0.9326 0.8647 −0.1468 0.044*
C5 0.7665 (3) 0.9175 (2) 0.0990 (3) 0.0313 (4)
H5 0.8457 0.9643 0.1180 0.038*
C6 0.4027 (3) 0.7086 (2) 0.0214 (2) 0.0253 (4)
Mn1 0.5000 1.0000 0.5000 0.02565 (17)
N1 0.6059 (2) 0.9108 (2) 0.22757 (19) 0.0291 (4)
N2 0.2536 (2) 0.6822 (2) 0.1516 (2) 0.0316 (4)
N3 0.1654 (2) 0.6214 (2) 0.0825 (2) 0.0345 (4)
N4 0.2572 (2) 0.6120 (2) −0.0813 (2) 0.0335 (4)
N5 0.4088 (2) 0.6669 (2) −0.12397 (19) 0.0293 (4)
O1 0.4248 (2) 1.25174 (18) 0.44974 (18) 0.0465 (4)
H1B 0.3486 1.3288 0.5213 0.056*
H1A 0.4587 1.2950 0.3548 0.056*
O2 0.79389 (19) 0.99831 (18) 0.44105 (18) 0.0364 (4)
H2A 0.8730 0.9173 0.4589 0.044*
H2B 0.8229 1.0820 0.4526 0.044*
O3 0.0823 (2) 0.75323 (18) 0.49811 (18) 0.0372 (4)
H3B 0.0942 0.6696 0.5562 0.045*
H3A 0.1346 0.7196 0.3958 0.045*
O4 0.1519 (2) 0.48719 (18) 0.69383 (17) 0.0359 (4)
H4B 0.0608 0.4519 0.7598 0.043*
H4A 0.1855 0.5271 0.7575 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0302 (10) 0.0403 (11) 0.0217 (10) −0.0155 (9) −0.0058 (8) −0.0023 (8)
C2 0.0279 (10) 0.0230 (9) 0.0239 (10) −0.0064 (8) −0.0108 (8) −0.0002 (7)
C3 0.0317 (10) 0.0378 (11) 0.0216 (10) −0.0100 (9) −0.0071 (8) −0.0061 (8)
C4 0.0286 (10) 0.0506 (13) 0.0277 (11) −0.0162 (10) −0.0043 (8) −0.0034 (9)
C5 0.0277 (10) 0.0374 (11) 0.0320 (11) −0.0116 (8) −0.0134 (8) −0.0010 (9)
C6 0.0292 (10) 0.0226 (9) 0.0234 (10) −0.0065 (8) −0.0104 (8) −0.0011 (7)
Mn1 0.0264 (2) 0.0299 (3) 0.0210 (2) −0.00911 (17) −0.00862 (17) −0.00332 (16)
N1 0.0311 (9) 0.0351 (9) 0.0230 (8) −0.0125 (7) −0.0105 (7) −0.0017 (7)
N2 0.0307 (9) 0.0386 (10) 0.0264 (9) −0.0142 (7) −0.0091 (7) −0.0018 (7)
N3 0.0341 (9) 0.0405 (10) 0.0320 (9) −0.0165 (8) −0.0122 (7) −0.0018 (8)
N4 0.0370 (9) 0.0370 (10) 0.0314 (9) −0.0153 (8) −0.0152 (8) −0.0008 (7)
N5 0.0348 (9) 0.0320 (9) 0.0237 (9) −0.0141 (7) −0.0109 (7) −0.0014 (7)
O1 0.0623 (10) 0.0321 (8) 0.0252 (8) −0.0059 (7) −0.0044 (7) 0.0003 (6)
O2 0.0302 (7) 0.0385 (8) 0.0429 (9) −0.0084 (6) −0.0166 (6) −0.0071 (6)
O3 0.0407 (8) 0.0377 (8) 0.0292 (8) −0.0113 (7) −0.0100 (6) −0.0011 (6)
O4 0.0401 (8) 0.0413 (8) 0.0273 (8) −0.0177 (7) −0.0094 (6) −0.0044 (6)

Geometric parameters (Å, º)

C1—N1 1.337 (3) Mn1—O2i 2.222 (3)
C1—C2 1.382 (3) Mn1—O2 2.222 (3)
C1—H1 0.9300 Mn1—N1 2.290 (3)
C2—C3 1.383 (3) Mn1—N1i 2.290 (3)
C2—C6 1.468 (3) N2—N3 1.342 (2)
C3—C4 1.382 (3) N3—N4 1.309 (3)
C3—H3 0.9300 N4—N5 1.349 (3)
C4—C5 1.377 (3) O1—H1B 0.8500
C4—H4 0.9300 O1—H1A 0.8500
C5—N1 1.336 (3) O2—H2A 0.8500
C5—H5 0.9300 O2—H2B 0.8501
C6—N5 1.331 (3) O3—H3B 0.8500
C6—N2 1.338 (3) O3—H3A 0.8501
Mn1—O1 2.132 (2) O4—H4B 0.8500
Mn1—O1i 2.132 (2) O4—H4A 0.8501
N1—C1—C2 124.70 (17) O1—Mn1—N1 95.02 (7)
N1—C1—H1 117.6 O1i—Mn1—N1 84.98 (7)
C2—C1—H1 117.6 O2i—Mn1—N1 92.50 (6)
C1—C2—C3 117.48 (18) O2—Mn1—N1 87.50 (6)
C1—C2—C6 118.90 (17) O1—Mn1—N1i 84.98 (7)
C3—C2—C6 123.61 (18) O1i—Mn1—N1i 95.02 (7)
C4—C3—C2 118.66 (19) O2i—Mn1—N1i 87.50 (5)
C4—C3—H3 120.7 O2—Mn1—N1i 92.50 (6)
C2—C3—H3 120.7 N1—Mn1—N1i 179.999 (1)
C5—C4—C3 119.62 (19) C5—N1—C1 116.74 (18)
C5—C4—H4 120.2 C5—N1—Mn1 127.06 (13)
C3—C4—H4 120.2 C1—N1—Mn1 116.17 (13)
N1—C5—C4 122.78 (19) C6—N2—N3 104.94 (17)
N1—C5—H5 118.6 N4—N3—N2 109.54 (17)
C4—C5—H5 118.6 N3—N4—N5 109.28 (15)
N5—C6—N2 111.27 (17) C6—N5—N4 104.97 (15)
N5—C6—C2 125.30 (17) Mn1—O1—H1B 126.3
N2—C6—C2 123.42 (17) Mn1—O1—H1A 127.6
O1—Mn1—O1i 180.0 H1B—O1—H1A 106.1
O1—Mn1—O2i 88.59 (7) Mn1—O2—H2A 122.5
O1i—Mn1—O2i 91.41 (7) Mn1—O2—H2B 123.2
O1—Mn1—O2 91.41 (7) H2A—O2—H2B 106.1
O1i—Mn1—O2 88.59 (7) H3B—O3—H3A 106.7
O2i—Mn1—O2 180.000 (1) H4B—O4—H4A 105.2

Symmetry code: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1B···O4ii 0.85 1.94 2.783 (3) 172
O1—H1A···N5iii 0.85 1.91 2.731 (3) 163
O2—H2A···O3iv 0.85 1.99 2.836 (3) 171
O2—H2B···O3i 0.85 1.96 2.800 (3) 169
O3—H3B···O4 0.85 1.96 2.803 (3) 171
O3—H3A···N2 0.85 1.96 2.797 (3) 170
O4—H4B···N3v 0.85 2.03 2.878 (3) 177
O4—H4A···N4vi 0.85 2.00 2.849 (3) 176

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+2, −z; (iv) x+1, y, z; (v) −x, −y+1, −z+1; (vi) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2497).

References

  1. Bruker (2000). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667. [DOI] [PMC free article] [PubMed]
  3. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681202510X/gk2497sup1.cif

e-68-0m890-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202510X/gk2497Isup2.hkl

e-68-0m890-Isup2.hkl (91.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES