Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):m891–m892. doi: 10.1107/S1600536812025007

Poly[μ2-aqua-μ4-(2-{3-[(6-chloro­pyridin-3-yl)meth­yl]-2-oxoimidazolidin-1-yl}acetato)-sodium]

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, Chetan S Shripanavar b, Kaushik Banerjee c, Madhukar B Deshmukh b
PMCID: PMC3393166  PMID: 22807734

Abstract

In the title compound, [Na(C11H11ClN3O3)(H2O)]n, there are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal–bipyramidal coordination environment. In the organic ligand, the imidazolidine ring adopts a half-chair conformation. The NaI ions bridge organic ligands and water mol­ecules, forming a two-dimensional structure parallel to (100). There are inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds within the two-dimensional structure.

Related literature  

For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyrid­yl)meth­yl]-4,5-dihydro­imidazol-2-yl]nitramide}, see: Legocki & Polec (2008); Kovganko & Kashkan (2004); Zhao et al. (2009); Tanner et al. (2010); Xu et al. (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012). graphic file with name e-68-0m891-scheme1.jpg

Experimental  

Crystal data  

  • [Na(C11H11ClN3O3)(H2O)]

  • M r = 309.68

  • Monoclinic, Inline graphic

  • a = 45.655 (2) Å

  • b = 4.9113 (2) Å

  • c = 12.5205 (7) Å

  • β = 102.184 (5)°

  • V = 2744.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.836, T max = 1.000

  • 9498 measured reflections

  • 2678 independent reflections

  • 1909 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.112

  • S = 1.02

  • 2678 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025007/lh5481sup1.cif

e-68-0m891-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025007/lh5481Isup2.hkl

e-68-0m891-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O12i 0.80 (4) 2.02 (4) 2.826 (3) 179 (3)
O1W—H2W⋯O15ii 0.84 (4) 2.02 (4) 2.822 (2) 158 (3)
C10—H10B⋯O12iii 0.97 2.54 3.279 (3) 133
C13—H13B⋯O16ii 0.97 2.49 3.265 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

supplementary crystallographic information

Comment

For the development of nicotinoid insecticides the crucial turning-point could be traced back to the work done by the scientists from Nihon Tokushu Noyaku Seizo K and Nippon Bayer (Legocki & Polec, 2008). Insects become resistant to insecticides due to continuous use and hence it is imperative to introduce new molecules having novel mode of action (Kovganko & Kashkan, 2004). The outstanding development of neonicotinoid insecticides has been achieved for the modern crop protection, consumer products, and animal health markets between 1990 and today reflects the enormous importance of this chemical class (Zhao et al., 2009). Neonicotinoids have low toxicity toward mammals and no teratogenic or mutagenic effects (Xu et al., 2010). The biological activity and agricultural uses of neonicotinoid insecticides are enormous (Zhao et al., 2009). From investigations it is revealed that the neonicotinoids are converted into numerous and variable metabolites in plants as well as in mammals (Tanner et al., 2010).

The asymmetric unit is shown in Fig. 1. The bond lengths and angles observed in (I) show normal values and are comparable to those in related structures (Kapoor et al., 2011; Kant et al., 2012). There are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly disotorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal bipyramidal coordination environment. In the organic ligand the imidazole ring adopts half-chair conformation (asymmetry parameter: ΔC2(C9—C10) = 2.31). The NaI ions bridge organic ligands and solvent water molecules to form a two-dimensional structure parallel to (100). There are intermolecular O—H···O and weak C—H···O hydrogen bonds within the two-dimensional structure.

Experimental

Ethyl[3-[(6-chloropyridin-3-yl)methyl]-2-(nitroimino)imidazolidin -1-yl]acetate (0.341 g m, 0.001 mol) was dissolved in 5 ml methanol and 5 ml 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343K for 12 h, and then cooled. The compound was re-precipitated upon neutralization with 1 N HCl. The compound was dissolved in methanol and crystallized in a fume hood at room temperature by the process of slow evaporation.

m.p. 575 K IR (KBr) νmax: 3421, 3300, 2872, 2930, 1668, 1606 cm-1. LC—MS/MS: 270, 252, 224, 149, 126 m/z.

Refinement

All H atoms except water H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were found in a difference map and isotropically refined

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure. The broken lines show the intermolecular C—H···O and O—H···O interactions. Only H atoms involved in hydrogen bonds have been shown.

Crystal data

[Na(C11H11ClN3O3)(H2O)] F(000) = 1280
Mr = 309.68 Dx = 1.499 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5286 reflections
a = 45.655 (2) Å θ = 3.6–29.0°
b = 4.9113 (2) Å µ = 0.33 mm1
c = 12.5205 (7) Å T = 293 K
β = 102.184 (5)° Block, white
V = 2744.2 (2) Å3 0.3 × 0.2 × 0.1 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2678 independent reflections
Radiation source: fine-focus sealed tube 1909 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.6°
ω scan h = −56→52
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −6→5
Tmin = 0.836, Tmax = 1.000 l = −15→15
9498 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 2.523P] where P = (Fo2 + 2Fc2)/3
2678 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 1.0000 1.0000 0.0000 0.0267 (3)
Na2 1.0000 1.0028 (2) 0.2500 0.0286 (3)
Cl1 0.76939 (2) 0.7478 (2) 0.18991 (10) 0.0963 (4)
N1 0.81725 (5) 0.4509 (6) 0.2281 (2) 0.0652 (7)
C2 0.81005 (7) 0.2440 (7) 0.0194 (3) 0.0685 (9)
H2 0.8072 0.1756 −0.0513 0.082*
C3 0.83467 (6) 0.1665 (5) 0.0972 (2) 0.0447 (7)
C4 0.83683 (7) 0.2781 (6) 0.1992 (3) 0.0570 (8)
H4 0.8534 0.2292 0.2529 0.068*
C5 0.78956 (7) 0.4245 (8) 0.0471 (3) 0.0769 (11)
H5 0.7728 0.4802 −0.0043 0.092*
C6 0.79453 (7) 0.5174 (7) 0.1510 (3) 0.0614 (8)
C7 0.85914 (6) −0.0155 (5) 0.0735 (2) 0.0491 (7)
H7A 0.8676 −0.1189 0.1387 0.059*
H7B 0.8505 −0.1439 0.0167 0.059*
N8 0.88292 (4) 0.1344 (4) 0.03879 (16) 0.0377 (5)
C9 0.87821 (7) 0.2620 (6) −0.0683 (2) 0.0549 (8)
H9A 0.8602 0.3723 −0.0825 0.066*
H9B 0.8770 0.1275 −0.1257 0.066*
C10 0.90605 (6) 0.4362 (6) −0.0581 (2) 0.0512 (7)
H10A 0.9219 0.3394 −0.0829 0.061*
H10B 0.9018 0.6046 −0.0989 0.061*
N11 0.91385 (4) 0.4864 (4) 0.05842 (16) 0.0331 (5)
C12 0.90251 (5) 0.2884 (5) 0.11303 (19) 0.0299 (5)
O12 0.90778 (4) 0.2517 (4) 0.21182 (13) 0.0437 (5)
C13 0.94038 (5) 0.6403 (5) 0.1062 (2) 0.0360 (6)
H13A 0.9397 0.6836 0.1812 0.043*
H13B 0.9401 0.8108 0.0668 0.043*
C14 0.96972 (5) 0.4954 (4) 0.10520 (16) 0.0228 (5)
O15 0.99295 (3) 0.6404 (3) 0.12325 (12) 0.0268 (4)
O16 0.96893 (3) 0.2446 (3) 0.09003 (13) 0.0302 (4)
O1W 1.03482 (4) 1.2101 (4) 0.15005 (15) 0.0364 (4)
H1W 1.0512 (7) 1.220 (6) 0.189 (3) 0.055 (9)*
H2W 1.0263 (8) 1.361 (8) 0.152 (3) 0.082 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.0343 (7) 0.0252 (6) 0.0226 (6) −0.0001 (5) 0.0104 (5) −0.0014 (5)
Na2 0.0387 (7) 0.0243 (6) 0.0236 (6) 0.000 0.0084 (5) 0.000
Cl1 0.0693 (6) 0.1034 (8) 0.1248 (9) 0.0315 (5) 0.0398 (6) 0.0245 (6)
N1 0.0462 (15) 0.0806 (19) 0.0682 (18) 0.0095 (14) 0.0111 (13) 0.0045 (15)
C2 0.0438 (18) 0.095 (3) 0.059 (2) −0.0028 (18) −0.0058 (15) −0.0005 (19)
C3 0.0307 (13) 0.0456 (15) 0.0556 (18) −0.0117 (12) 0.0042 (12) 0.0062 (13)
C4 0.0397 (16) 0.073 (2) 0.0546 (19) 0.0058 (15) 0.0004 (13) 0.0096 (16)
C5 0.0401 (18) 0.104 (3) 0.079 (3) 0.0158 (18) −0.0045 (17) 0.019 (2)
C6 0.0423 (17) 0.067 (2) 0.078 (2) 0.0010 (15) 0.0184 (16) 0.0143 (18)
C7 0.0412 (15) 0.0387 (14) 0.0650 (19) −0.0123 (13) 0.0060 (13) −0.0015 (14)
N8 0.0363 (11) 0.0375 (11) 0.0369 (12) −0.0057 (10) 0.0024 (9) −0.0023 (9)
C9 0.0507 (17) 0.074 (2) 0.0349 (16) −0.0085 (15) −0.0032 (13) −0.0032 (14)
C10 0.0439 (15) 0.074 (2) 0.0327 (15) −0.0043 (14) 0.0015 (12) 0.0151 (14)
N11 0.0278 (10) 0.0322 (10) 0.0386 (11) −0.0006 (9) 0.0057 (8) 0.0036 (9)
C12 0.0242 (11) 0.0327 (12) 0.0327 (14) 0.0049 (10) 0.0057 (10) −0.0007 (10)
O12 0.0328 (9) 0.0672 (12) 0.0308 (10) −0.0053 (8) 0.0057 (7) 0.0033 (9)
C13 0.0331 (13) 0.0251 (11) 0.0517 (16) 0.0000 (10) 0.0133 (11) −0.0013 (11)
C14 0.0302 (11) 0.0213 (10) 0.0173 (10) 0.0011 (10) 0.0063 (9) 0.0016 (9)
O15 0.0288 (8) 0.0230 (7) 0.0283 (8) −0.0029 (7) 0.0056 (6) −0.0017 (6)
O16 0.0329 (9) 0.0182 (7) 0.0410 (9) −0.0002 (6) 0.0116 (7) −0.0023 (6)
O1W 0.0315 (10) 0.0405 (11) 0.0347 (10) −0.0025 (9) 0.0011 (8) −0.0037 (8)

Geometric parameters (Å, º)

Na1—O16i 2.3239 (14) C5—C6 1.351 (5)
Na1—O16ii 2.3239 (14) C5—H5 0.9300
Na1—O15iii 2.4112 (14) C7—N8 1.452 (3)
Na1—O15 2.4112 (14) C7—H7A 0.9700
Na1—O1Wiii 2.4208 (18) C7—H7B 0.9700
Na1—O1W 2.4208 (18) N8—C12 1.373 (3)
Na1—Na2iii 3.1302 (2) N8—C9 1.454 (3)
Na1—Na2 3.1302 (2) C9—C10 1.515 (4)
Na2—O15 2.3611 (16) C9—H9A 0.9700
Na2—O15iv 2.3611 (16) C9—H9B 0.9700
Na2—O1W 2.4432 (18) C10—N11 1.448 (3)
Na2—O1Wiv 2.4432 (18) C10—H10A 0.9700
Na2—O16v 2.4969 (16) C10—H10B 0.9700
Na2—O16ii 2.4968 (16) N11—C12 1.353 (3)
Na2—Na1iv 3.1302 (2) N11—C13 1.446 (3)
Na2—H2W 2.58 (3) C12—O12 1.223 (3)
Cl1—C6 1.753 (3) C13—C14 1.519 (3)
N1—C6 1.301 (4) C13—H13A 0.9700
N1—C4 1.336 (4) C13—H13B 0.9700
C2—C3 1.377 (4) C14—O16 1.246 (2)
C2—C5 1.385 (5) C14—O15 1.257 (2)
C2—H2 0.9300 O16—Na1vi 2.3239 (14)
C3—C4 1.374 (4) O16—Na2vi 2.4968 (16)
C3—C7 1.509 (4) O1W—H1W 0.81 (3)
C4—H4 0.9300 O1W—H2W 0.84 (4)
O16i—Na1—O16ii 180.00 (5) C6—N1—C4 115.7 (3)
O16i—Na1—O15iii 83.72 (5) C3—C2—C5 119.6 (3)
O16ii—Na1—O15iii 96.28 (5) C3—C2—H2 120.2
O16i—Na1—O15 96.28 (5) C5—C2—H2 120.2
O16ii—Na1—O15 83.72 (5) C4—C3—C2 115.8 (3)
O15iii—Na1—O15 180.00 (7) C4—C3—C7 120.6 (2)
O16i—Na1—O1Wiii 76.78 (6) C2—C3—C7 123.5 (3)
O16ii—Na1—O1Wiii 103.22 (6) N1—C4—C3 125.7 (3)
O15iii—Na1—O1Wiii 88.29 (6) N1—C4—H4 117.1
O15—Na1—O1Wiii 91.71 (6) C3—C4—H4 117.1
O16i—Na1—O1W 103.22 (6) C6—C5—C2 118.2 (3)
O16ii—Na1—O1W 76.78 (6) C6—C5—H5 120.9
O15iii—Na1—O1W 91.71 (6) C2—C5—H5 120.9
O15—Na1—O1W 88.29 (6) N1—C6—C5 125.1 (3)
O1Wiii—Na1—O1W 180.00 (8) N1—C6—Cl1 115.0 (3)
O16i—Na1—Na2iii 51.96 (4) C5—C6—Cl1 119.9 (3)
O16ii—Na1—Na2iii 128.04 (4) N8—C7—C3 112.9 (2)
O15iii—Na1—Na2iii 48.32 (4) N8—C7—H7A 109.0
O15—Na1—Na2iii 131.68 (4) C3—C7—H7A 109.0
O1Wiii—Na1—Na2iii 50.26 (4) N8—C7—H7B 109.0
O1W—Na1—Na2iii 129.74 (4) C3—C7—H7B 109.0
O16i—Na1—Na2 128.04 (4) H7A—C7—H7B 107.8
O16ii—Na1—Na2 51.96 (4) C12—N8—C7 119.9 (2)
O15iii—Na1—Na2 131.68 (4) C12—N8—C9 109.6 (2)
O15—Na1—Na2 48.32 (4) C7—N8—C9 121.3 (2)
O1Wiii—Na1—Na2 129.74 (4) N8—C9—C10 102.0 (2)
O1W—Na1—Na2 50.26 (4) N8—C9—H9A 111.4
Na2iii—Na1—Na2 180.00 (4) C10—C9—H9A 111.4
O15—Na2—O15iv 82.15 (8) N8—C9—H9B 111.4
O15—Na2—O1W 88.91 (5) C10—C9—H9B 111.4
O15iv—Na2—O1W 130.33 (6) H9A—C9—H9B 109.2
O15—Na2—O1Wiv 130.33 (6) N11—C10—C9 101.8 (2)
O15iv—Na2—O1Wiv 88.91 (6) N11—C10—H10A 111.4
O1W—Na2—O1Wiv 130.75 (10) C9—C10—H10A 111.4
O15—Na2—O16v 150.63 (6) N11—C10—H10B 111.4
O15iv—Na2—O16v 81.11 (5) C9—C10—H10B 111.4
O1W—Na2—O16v 83.79 (6) H10A—C10—H10B 109.3
O1Wiv—Na2—O16v 73.25 (6) C12—N11—C13 122.9 (2)
O15—Na2—O16ii 81.11 (5) C12—N11—C10 110.4 (2)
O15iv—Na2—O16ii 150.63 (6) C13—N11—C10 120.80 (19)
O1W—Na2—O16ii 73.25 (6) O12—C12—N11 127.1 (2)
O1Wiv—Na2—O16ii 83.79 (6) O12—C12—N8 124.4 (2)
O16v—Na2—O16ii 123.21 (8) N11—C12—N8 108.5 (2)
O15—Na2—Na1iv 129.79 (5) N11—C13—C14 114.54 (18)
O15iv—Na2—Na1iv 49.71 (3) N11—C13—H13A 108.6
O1W—Na2—Na1iv 130.64 (5) C14—C13—H13A 108.6
O1Wiv—Na2—Na1iv 49.63 (4) N11—C13—H13B 108.6
O16v—Na2—Na1iv 47.14 (3) C14—C13—H13B 108.6
O16ii—Na2—Na1iv 133.19 (4) H13A—C13—H13B 107.6
O15—Na2—Na1 49.71 (3) O16—C14—O15 125.69 (19)
O15iv—Na2—Na1 129.79 (5) O16—C14—C13 117.84 (18)
O1W—Na2—Na1 49.63 (4) O15—C14—C13 116.43 (18)
O1Wiv—Na2—Na1 130.65 (5) C14—O15—Na2 122.53 (12)
O16v—Na2—Na1 133.19 (4) C14—O15—Na1 121.41 (12)
O16ii—Na2—Na1 47.14 (3) Na2—O15—Na1 81.97 (5)
Na1iv—Na2—Na1 179.49 (4) C14—O16—Na1vi 125.73 (13)
O15—Na2—H2W 101.9 (8) C14—O16—Na2vi 110.77 (13)
O15iv—Na2—H2W 145.3 (8) Na1vi—O16—Na2vi 80.89 (5)
O1W—Na2—H2W 19.0 (8) Na1—O1W—Na2 80.11 (5)
O1Wiv—Na2—H2W 112.1 (8) Na1—O1W—H1W 151 (2)
O16v—Na2—H2W 79.3 (8) Na2—O1W—H1W 110 (2)
O16ii—Na2—H2W 62.4 (8) Na1—O1W—H2W 100 (2)
Na1iv—Na2—H2W 125.2 (8) Na2—O1W—H2W 90 (2)
Na1—Na2—H2W 55.2 (8) H1W—O1W—H2W 108 (3)
O16i—Na1—Na2—O15 −59.31 (6) C13—N11—C12—N8 −163.81 (19)
O16ii—Na1—Na2—O15 120.69 (6) C10—N11—C12—N8 −10.9 (3)
O15iii—Na1—Na2—O15 180.000 (3) C7—N8—C12—O12 23.0 (3)
O1Wiii—Na1—Na2—O15 46.52 (8) C9—N8—C12—O12 170.2 (2)
O1W—Na1—Na2—O15 −133.48 (8) C7—N8—C12—N11 −155.4 (2)
O16i—Na1—Na2—O15iv −39.26 (7) C9—N8—C12—N11 −8.1 (3)
O16ii—Na1—Na2—O15iv 140.74 (7) C12—N11—C13—C14 80.5 (3)
O15iii—Na1—Na2—O15iv −159.94 (9) C10—N11—C13—C14 −69.7 (3)
O15—Na1—Na2—O15iv 20.06 (9) N11—C13—C14—O16 −17.1 (3)
O1Wiii—Na1—Na2—O15iv 66.58 (8) N11—C13—C14—O15 164.93 (18)
O1W—Na1—Na2—O15iv −113.42 (8) O16—C14—O15—Na2 −140.66 (17)
O16i—Na1—Na2—O1W 74.17 (8) C13—C14—O15—Na2 37.1 (2)
O16ii—Na1—Na2—O1W −105.83 (8) O16—C14—O15—Na1 118.07 (19)
O15iii—Na1—Na2—O1W −46.52 (8) C13—C14—O15—Na1 −64.2 (2)
O15—Na1—Na2—O1W 133.48 (8) O15iv—Na2—O15—C14 73.13 (14)
O1Wiii—Na1—Na2—O1W 180.000 (2) O1W—Na2—O15—C14 −155.86 (15)
O16i—Na1—Na2—O1Wiv −172.30 (8) O1Wiv—Na2—O15—C14 −8.69 (18)
O16ii—Na1—Na2—O1Wiv 7.70 (8) O16v—Na2—O15—C14 128.87 (15)
O15iii—Na1—Na2—O1Wiv 67.01 (9) O16ii—Na2—O15—C14 −82.65 (15)
O15—Na1—Na2—O1Wiv −112.99 (9) Na1iv—Na2—O15—C14 57.82 (16)
O1Wiii—Na1—Na2—O1Wiv −66.47 (14) Na1—Na2—O15—C14 −122.29 (16)
O1W—Na1—Na2—O1Wiv 113.53 (14) O15iv—Na2—O15—Na1 −164.57 (7)
O16i—Na1—Na2—O16v 81.15 (10) O1W—Na2—O15—Na1 −33.57 (6)
O16ii—Na1—Na2—O16v −98.85 (10) O1Wiv—Na2—O15—Na1 113.60 (7)
O15iii—Na1—Na2—O16v −39.54 (8) O16v—Na2—O15—Na1 −108.84 (10)
O15—Na1—Na2—O16v 140.46 (8) O16ii—Na2—O15—Na1 39.65 (4)
O1Wiii—Na1—Na2—O16v −173.02 (8) Na1iv—Na2—O15—Na1 −179.885 (9)
O1W—Na1—Na2—O16v 6.98 (8) O16i—Na1—O15—C14 −99.57 (14)
O16i—Na1—Na2—O16ii 180.000 (1) O16ii—Na1—O15—C14 80.43 (14)
O15iii—Na1—Na2—O16ii 59.31 (6) O1Wiii—Na1—O15—C14 −22.69 (15)
O15—Na1—Na2—O16ii −120.69 (6) O1W—Na1—O15—C14 157.31 (15)
O1Wiii—Na1—Na2—O16ii −74.17 (8) Na2iii—Na1—O15—C14 −56.62 (15)
O1W—Na1—Na2—O16ii 105.83 (8) Na2—Na1—O15—C14 123.38 (15)
C5—C2—C3—C4 0.2 (4) O16i—Na1—O15—Na2 137.04 (5)
C5—C2—C3—C7 −176.3 (3) O16ii—Na1—O15—Na2 −42.96 (5)
C6—N1—C4—C3 −0.6 (5) O1Wiii—Na1—O15—Na2 −146.07 (6)
C2—C3—C4—N1 0.3 (5) O1W—Na1—O15—Na2 33.93 (6)
C7—C3—C4—N1 176.9 (3) Na2iii—Na1—O15—Na2 180.000 (2)
C3—C2—C5—C6 −0.4 (5) O15—C14—O16—Na1vi −35.2 (3)
C4—N1—C6—C5 0.4 (5) C13—C14—O16—Na1vi 147.11 (16)
C4—N1—C6—Cl1 −179.1 (2) O15—C14—O16—Na2vi 58.5 (2)
C2—C5—C6—N1 0.1 (6) C13—C14—O16—Na2vi −119.20 (17)
C2—C5—C6—Cl1 179.6 (3) O16i—Na1—O1W—Na2 −128.89 (6)
C4—C3—C7—N8 −87.5 (3) O16ii—Na1—O1W—Na2 51.11 (6)
C2—C3—C7—N8 88.8 (3) O15iii—Na1—O1W—Na2 147.16 (6)
C3—C7—N8—C12 71.7 (3) O15—Na1—O1W—Na2 −32.83 (6)
C3—C7—N8—C9 −71.6 (3) Na2iii—Na1—O1W—Na2 180.000 (1)
C12—N8—C9—C10 22.3 (3) O15—Na2—O1W—Na1 33.61 (5)
C7—N8—C9—C10 169.0 (2) O15iv—Na2—O1W—Na1 112.35 (8)
N8—C9—C10—N11 −26.8 (3) O1Wiv—Na2—O1W—Na1 −113.33 (6)
C9—C10—N11—C12 24.0 (3) O16v—Na2—O1W—Na1 −174.89 (6)
C9—C10—N11—C13 177.6 (2) O16ii—Na2—O1W—Na1 −47.43 (5)
C13—N11—C12—O12 17.9 (3) Na1iv—Na2—O1W—Na1 179.44 (4)
C10—N11—C12—O12 170.9 (2)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y+1, z; (iii) −x+2, −y+2, −z; (iv) −x+2, y, −z+1/2; (v) −x+2, y+1, −z+1/2; (vi) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O12v 0.80 (4) 2.02 (4) 2.826 (3) 179 (3)
O1W—H2W···O15ii 0.84 (4) 2.02 (4) 2.822 (2) 158 (3)
C10—H10B···O12vii 0.97 2.54 3.279 (3) 133
C13—H13B···O16ii 0.97 2.49 3.265 (3) 137

Symmetry codes: (ii) x, y+1, z; (v) −x+2, y+1, −z+1/2; (vii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5481).

References

  1. Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147. [DOI] [PMC free article] [PubMed]
  4. Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469. [DOI] [PMC free article] [PubMed]
  5. Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, 55–56.
  6. Kovganko, N. V. & Kashkan, Zh. N. (2004). Russ. J. Org. Chem. 40, 1709–1726.
  7. Legocki, J. & Polec, I. (2008). Pestycydy, 1–2, 143–159.
  8. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tanner, G. (2010). Masters Thesis "Development of a Method for the Analysis of Neonicotinoid Insecticide Residues in Honey using LCMS/MS and Investigations of Neonicotinoid Insecticides in Matrices of Importance in Apiculture", Austrian Agency for Health and Food Safety, Vienna.
  12. Xu, T., Wei, K.-Y., Wang, J., Ma, H.-X. & Li, J. (2010). XUETAL J. AOAC Int. 93, 12–18. [PubMed]
  13. Zhao, Y., Li, Y., Wang, S. & Li, Z. (2009). ARKIVOC, xi,152–164.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812025007/lh5481sup1.cif

e-68-0m891-sup1.cif (29KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025007/lh5481Isup2.hkl

e-68-0m891-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES