Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 13;68(Pt 7):m897–m898. doi: 10.1107/S1600536812025664

(Acetato-κO)(acetato-κ2 O,O′)[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN 2)quinoline-κN]zinc(II)

Muhd Hidayat bin Najib a, Ai Ling Tan a, David J Young a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3393171  PMID: 22807739

Abstract

The ZnII atom in the title compound, [Zn(C2H3O2)2(C14H13N3)], is coordinated by an N2O3 donor set defined by the quinolinyl- and pyrazolyl-N atoms of the chelating heterocyclic ligand, and three carboxyl­ate-O atoms derived from the monodentate and bidentate carboxyl­ate ligands. Distortions from the ideal square-pyramidal coordination geometry relate to the restricted bite angle of the chelating ligands, i.e. O—Zn—O = 59.65 (5) and N—Zn—N = 76.50 (6)°, and the close approach of the non-coordinating carbonyl atom [Zn⋯O = 2.858 (2) Å]. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by C—H⋯O inter­actions

Related literature  

For background to luminescent coordination complexes, see: Bai et al. (2011, 2012); Chou et al. (2011); Wang (2001). For the synthesis, see: Savel’eva et al. (2009); Scott et al. (1952). For the structure of the dichlorido analogue, see: Najib et al. (2012). For additional geometric analysis, see: Addison et al. (1984).graphic file with name e-68-0m897-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C2H3O2)2(C14H13N3)]

  • M r = 406.73

  • Triclinic, Inline graphic

  • a = 7.6586 (4) Å

  • b = 10.7334 (6) Å

  • c = 11.5772 (4) Å

  • α = 69.437 (4)°

  • β = 81.546 (3)°

  • γ = 72.736 (4)°

  • V = 849.93 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.617, T max = 1.000

  • 6205 measured reflections

  • 3498 independent reflections

  • 3322 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.081

  • S = 1.03

  • 3498 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025664/hb6839sup1.cif

e-68-0m897-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025664/hb6839Isup2.hkl

e-68-0m897-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—O1 2.0388 (14)
Zn—O2 2.3240 (15)
Zn—O3 1.9397 (13)
Zn—N1 2.0570 (15)
Zn—N3 2.1460 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O3i 0.98 2.57 3.544 (2) 176
C5—H5A⋯O2ii 0.98 2.60 3.417 (3) 141
C7—H7⋯O2ii 0.95 2.56 3.235 (2) 128
C9—H9C⋯O4iii 0.98 2.36 3.274 (2) 156
C12—H12⋯O1iv 0.95 2.51 3.310 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Many ZnII complexes of nitrogen-containing ligands exhibit intense emission at room temperature (Wang, 2001; Chou et al., 2011; Bai et al., 2011; Bai et al., 2012). The title compound was prepared as part of a series of potentially luminescent coordination complexes for use in organic light emitting diode (OLED) materials. We have previously reported the solid-state structure of dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-2)quinoline]zinc(II) (Najib et al., 2012), i.e. the dichlorido analogue of the title compound, (I).

The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms of the heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylates, Table 1. The resulting N2O3 donor set defines an approximate square pyramid with the Zn atom lying 0.8591 (8) Å out of the plane defined by the O1, O2, N1 and N3 atoms [r.m.s. deviation = 0.1122 Å] in the direction of the O3 atom. The assignment of coordination geometry is quantified by the value of τ = 0.06 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Significant distortions in the coordination geometry are apparent owing the restricted bite angles of the chelating ligands, i.e. O1—Zn—O2 = 59.65 (5)° and N1—Zn—N3 = 76.50 (6)°. Further distortions are related to the relatively close approach of the O4 atom to Zn, the Zn···O4 separation is 2.858 (2) Å. The five-membered chelate ring is approximately planar with a r.m.s. deviation = 0.088 Å and with maximum deviations of 0.074 (2) and -0.057 (1) Å for the N1 and Zn atoms, respectively. The bidentate ligand is planar with the dihedral angle between the quinolinyl and pyrazolyl rings being 2.14 (6)°.

Molecules are consolidated into a three-dimensional architecture by C—H···O interactions, Fig. 2 and Table 2.

Experimental

The title compound was prepared by modification of a literature procedure (Savel'eva et al., 2009) and as previously described for the corresponding dichloride (Najib et al., 2012). 3,5-Dimethyl-1-(2'-quinolyl)pyrazole (0.0908 g), prepared as in the literature (Scott et al., 1952), in a mixture of EtOH (4 ml) and CH2Cl2 (2 ml) was added to a suspension of Zn(OAc)2 (0.0764 g) in EtOH (8 ml). The solution was heated to dissolve the Zn(OAc)2. Light-brown prisms formed over a period of 16 h and were collected by filtration, washed with EtOH and recrystallized from CH2Cl2/hexane. Yield 0.0733 g (44%). M.pt: 474 K. IR v/cm-1: 2925, 2864, 2365, 2323, 1604, 1507, 1424, 1388.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of (I) in projection down the c axis. The C—H···O interactions are shown as orange dashed lines.

Crystal data

[Zn(C2H3O2)2(C14H13N3)] Z = 2
Mr = 406.73 F(000) = 420
Triclinic, P1 Dx = 1.589 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.6586 (4) Å Cell parameters from 3775 reflections
b = 10.7334 (6) Å θ = 4.6–76.3°
c = 11.5772 (4) Å µ = 2.27 mm1
α = 69.437 (4)° T = 100 K
β = 81.546 (3)° Prism, light-brown
γ = 72.736 (4)° 0.25 × 0.15 × 0.05 mm
V = 849.93 (7) Å3

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 3498 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3322 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.4041 pixels mm-1 θmax = 76.5°, θmin = 4.6°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→13
Tmin = 0.617, Tmax = 1.000 l = −11→14
6205 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5376P] where P = (Fo2 + 2Fc2)/3
3498 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.81157 (3) 0.72065 (2) 0.729830 (19) 0.01539 (9)
O1 0.54802 (18) 0.81205 (15) 0.67857 (12) 0.0237 (3)
O2 0.7235 (2) 0.72283 (17) 0.54526 (14) 0.0333 (3)
O3 0.97606 (19) 0.83912 (14) 0.66803 (13) 0.0251 (3)
O4 0.8163 (2) 0.95459 (18) 0.79237 (13) 0.0346 (4)
N1 0.9903 (2) 0.53183 (15) 0.73964 (13) 0.0157 (3)
N2 0.9663 (2) 0.42401 (15) 0.84284 (13) 0.0148 (3)
N3 0.76154 (19) 0.59226 (15) 0.91411 (13) 0.0147 (3)
C1 0.5715 (3) 0.78835 (18) 0.57607 (17) 0.0191 (3)
C2 0.4136 (3) 0.8434 (2) 0.49227 (18) 0.0247 (4)
H2A 0.4333 0.7891 0.4366 0.037*
H2B 0.4053 0.9401 0.4436 0.037*
H2C 0.2996 0.8367 0.5421 0.037*
C3 0.9376 (3) 0.93922 (19) 0.71118 (16) 0.0203 (4)
C4 1.0519 (3) 1.0407 (2) 0.65732 (18) 0.0238 (4)
H4A 1.0008 1.1202 0.6865 0.036*
H4B 1.0515 1.0719 0.5670 0.036*
H4C 1.1778 0.9961 0.6834 0.036*
C5 1.1702 (3) 0.56456 (19) 0.54237 (16) 0.0216 (4)
H5A 1.1823 0.5196 0.4800 0.032*
H5B 1.2888 0.5773 0.5503 0.032*
H5C 1.0801 0.6546 0.5171 0.032*
C6 1.1083 (2) 0.47655 (18) 0.66347 (16) 0.0169 (3)
C7 1.1602 (2) 0.33201 (18) 0.71639 (16) 0.0172 (3)
H7 1.2427 0.2686 0.6804 0.021*
C8 1.0696 (2) 0.29988 (18) 0.82920 (16) 0.0162 (3)
C9 1.0774 (3) 0.15864 (18) 0.91825 (16) 0.0197 (3)
H9A 1.1598 0.0897 0.8838 0.029*
H9B 0.9545 0.1441 0.9330 0.029*
H9C 1.1231 0.1494 0.9964 0.029*
C10 0.8445 (2) 0.45914 (18) 0.93770 (15) 0.0146 (3)
C11 0.8173 (2) 0.35645 (18) 1.04951 (16) 0.0175 (3)
H11 0.8819 0.2624 1.0634 0.021*
C12 0.6956 (2) 0.39558 (19) 1.13728 (16) 0.0186 (3)
H12 0.6735 0.3279 1.2127 0.022*
C13 0.6026 (2) 0.53597 (18) 1.11662 (16) 0.0165 (3)
C14 0.4758 (2) 0.5825 (2) 1.20508 (16) 0.0197 (4)
H14 0.4464 0.5176 1.2803 0.024*
C15 0.3960 (2) 0.7202 (2) 1.18233 (17) 0.0212 (4)
H15 0.3129 0.7509 1.2423 0.025*
C16 0.4366 (2) 0.81699 (19) 1.06979 (17) 0.0204 (4)
H16 0.3813 0.9126 1.0554 0.025*
C17 0.5549 (2) 0.77526 (18) 0.98073 (16) 0.0183 (3)
H17 0.5788 0.8414 0.9047 0.022*
C18 0.6406 (2) 0.63361 (18) 1.00311 (15) 0.0157 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.01744 (13) 0.01236 (13) 0.01501 (13) −0.00462 (9) −0.00080 (9) −0.00227 (9)
O1 0.0225 (7) 0.0315 (7) 0.0164 (6) −0.0077 (6) −0.0021 (5) −0.0058 (5)
O2 0.0279 (8) 0.0360 (8) 0.0346 (8) 0.0037 (6) −0.0070 (6) −0.0178 (7)
O3 0.0254 (7) 0.0173 (6) 0.0335 (7) −0.0087 (5) −0.0018 (6) −0.0067 (5)
O4 0.0350 (8) 0.0474 (9) 0.0219 (7) −0.0177 (7) 0.0070 (6) −0.0096 (6)
N1 0.0193 (7) 0.0134 (7) 0.0132 (6) −0.0059 (6) −0.0005 (5) −0.0015 (5)
N2 0.0172 (7) 0.0121 (6) 0.0133 (6) −0.0044 (5) −0.0012 (5) −0.0012 (5)
N3 0.0159 (7) 0.0141 (7) 0.0139 (6) −0.0045 (5) −0.0019 (5) −0.0034 (5)
C1 0.0218 (9) 0.0131 (8) 0.0210 (8) −0.0073 (7) −0.0013 (7) −0.0013 (6)
C2 0.0265 (10) 0.0261 (10) 0.0220 (9) −0.0074 (8) −0.0060 (7) −0.0062 (7)
C3 0.0231 (9) 0.0210 (9) 0.0125 (7) −0.0048 (7) −0.0062 (6) 0.0009 (6)
C4 0.0294 (10) 0.0212 (9) 0.0253 (9) −0.0116 (8) 0.0022 (7) −0.0103 (7)
C5 0.0258 (9) 0.0205 (9) 0.0179 (8) −0.0085 (7) 0.0030 (7) −0.0053 (7)
C6 0.0178 (8) 0.0186 (8) 0.0159 (8) −0.0062 (7) −0.0010 (6) −0.0063 (7)
C7 0.0180 (8) 0.0163 (8) 0.0188 (8) −0.0048 (6) −0.0019 (6) −0.0070 (7)
C8 0.0173 (8) 0.0139 (8) 0.0184 (8) −0.0037 (6) −0.0040 (6) −0.0055 (6)
C9 0.0232 (9) 0.0134 (8) 0.0201 (8) −0.0032 (7) −0.0030 (7) −0.0034 (7)
C10 0.0153 (8) 0.0150 (8) 0.0139 (7) −0.0056 (6) −0.0022 (6) −0.0031 (6)
C11 0.0204 (8) 0.0145 (8) 0.0167 (8) −0.0056 (6) −0.0020 (6) −0.0026 (6)
C12 0.0205 (8) 0.0183 (8) 0.0148 (8) −0.0075 (7) −0.0015 (6) −0.0007 (6)
C13 0.0151 (8) 0.0196 (8) 0.0161 (8) −0.0071 (7) −0.0018 (6) −0.0049 (7)
C14 0.0187 (8) 0.0255 (9) 0.0152 (8) −0.0078 (7) 0.0001 (6) −0.0058 (7)
C15 0.0166 (8) 0.0288 (10) 0.0206 (8) −0.0053 (7) 0.0002 (6) −0.0118 (7)
C16 0.0171 (8) 0.0205 (9) 0.0246 (9) −0.0034 (7) −0.0029 (7) −0.0089 (7)
C17 0.0177 (8) 0.0168 (8) 0.0203 (8) −0.0049 (7) −0.0027 (6) −0.0049 (7)
C18 0.0151 (8) 0.0178 (8) 0.0150 (8) −0.0059 (6) −0.0024 (6) −0.0041 (6)

Geometric parameters (Å, º)

Zn—O1 2.0388 (14) C5—H5B 0.9800
Zn—O2 2.3240 (15) C5—H5C 0.9800
Zn—O3 1.9397 (13) C6—C7 1.406 (2)
Zn—N1 2.0570 (15) C7—C8 1.366 (2)
Zn—N3 2.1460 (14) C7—H7 0.9500
O1—C1 1.276 (2) C8—C9 1.494 (2)
O2—C1 1.243 (2) C9—H9A 0.9800
O3—C3 1.279 (2) C9—H9B 0.9800
O4—C3 1.239 (2) C9—H9C 0.9800
N1—C6 1.327 (2) C10—C11 1.410 (2)
N1—N2 1.3752 (19) C11—C12 1.366 (3)
N2—C8 1.383 (2) C11—H11 0.9500
N2—C10 1.414 (2) C12—C13 1.412 (3)
N3—C10 1.326 (2) C12—H12 0.9500
N3—C18 1.383 (2) C13—C18 1.418 (2)
C1—C2 1.507 (3) C13—C14 1.422 (2)
C2—H2A 0.9800 C14—C15 1.365 (3)
C2—H2B 0.9800 C14—H14 0.9500
C2—H2C 0.9800 C15—C16 1.413 (3)
C3—C4 1.507 (3) C15—H15 0.9500
C4—H4A 0.9800 C16—C17 1.376 (3)
C4—H4B 0.9800 C16—H16 0.9500
C4—H4C 0.9800 C17—C18 1.411 (2)
C5—C6 1.491 (2) C17—H17 0.9500
C5—H5A 0.9800
O3—Zn—O1 115.05 (6) H5A—C5—H5C 109.5
O3—Zn—N1 100.66 (6) H5B—C5—H5C 109.5
O1—Zn—N1 133.70 (6) N1—C6—C7 109.92 (15)
O3—Zn—N3 130.20 (6) N1—C6—C5 121.23 (16)
O1—Zn—N3 99.32 (5) C7—C6—C5 128.84 (16)
N1—Zn—N3 76.50 (6) C8—C7—C6 107.15 (16)
O3—Zn—O2 100.51 (6) C8—C7—H7 126.4
O1—Zn—O2 59.65 (5) C6—C7—H7 126.4
N1—Zn—O2 86.61 (6) C7—C8—N2 106.19 (15)
N3—Zn—O2 128.42 (6) C7—C8—C9 126.73 (16)
C1—O1—Zn 96.11 (11) N2—C8—C9 127.07 (15)
C1—O2—Zn 83.96 (12) C8—C9—H9A 109.5
C3—O3—Zn 113.89 (12) C8—C9—H9B 109.5
C6—N1—N2 106.53 (14) H9A—C9—H9B 109.5
C6—N1—Zn 137.00 (12) C8—C9—H9C 109.5
N2—N1—Zn 115.34 (10) H9A—C9—H9C 109.5
N1—N2—C8 110.21 (13) H9B—C9—H9C 109.5
N1—N2—C10 116.43 (14) N3—C10—N2 115.77 (14)
C8—N2—C10 133.36 (14) N3—C10—C11 123.55 (16)
C10—N3—C18 118.69 (14) N2—C10—C11 120.68 (15)
C10—N3—Zn 114.76 (11) C12—C11—C10 118.35 (16)
C18—N3—Zn 126.25 (11) C12—C11—H11 120.8
O2—C1—O1 120.25 (17) C10—C11—H11 120.8
O2—C1—C2 120.74 (17) C11—C12—C13 120.42 (16)
O1—C1—C2 119.00 (17) C11—C12—H12 119.8
C1—C2—H2A 109.5 C13—C12—H12 119.8
C1—C2—H2B 109.5 C12—C13—C18 117.95 (16)
H2A—C2—H2B 109.5 C12—C13—C14 122.76 (16)
C1—C2—H2C 109.5 C18—C13—C14 119.28 (16)
H2A—C2—H2C 109.5 C15—C14—C13 120.20 (16)
H2B—C2—H2C 109.5 C15—C14—H14 119.9
O4—C3—O3 123.91 (18) C13—C14—H14 119.9
O4—C3—C4 120.51 (18) C14—C15—C16 120.16 (17)
O3—C3—C4 115.58 (16) C14—C15—H15 119.9
C3—C4—H4A 109.5 C16—C15—H15 119.9
C3—C4—H4B 109.5 C17—C16—C15 121.15 (17)
H4A—C4—H4B 109.5 C17—C16—H16 119.4
C3—C4—H4C 109.5 C15—C16—H16 119.4
H4A—C4—H4C 109.5 C16—C17—C18 119.54 (16)
H4B—C4—H4C 109.5 C16—C17—H17 120.2
C6—C5—H5A 109.5 C18—C17—H17 120.2
C6—C5—H5B 109.5 N3—C18—C17 119.36 (15)
H5A—C5—H5B 109.5 N3—C18—C13 121.01 (16)
C6—C5—H5C 109.5 C17—C18—C13 119.63 (16)
O3—Zn—O1—C1 86.61 (12) Zn—N1—C6—C7 −165.93 (13)
N1—Zn—O1—C1 −50.21 (13) N2—N1—C6—C5 −178.46 (15)
N3—Zn—O1—C1 −130.39 (11) Zn—N1—C6—C5 15.0 (3)
O2—Zn—O1—C1 −1.07 (10) N1—C6—C7—C8 −0.2 (2)
O3—Zn—O2—C1 −111.88 (12) C5—C6—C7—C8 178.77 (18)
O1—Zn—O2—C1 1.10 (10) C6—C7—C8—N2 −0.27 (19)
N1—Zn—O2—C1 147.89 (12) C6—C7—C8—C9 178.33 (17)
N3—Zn—O2—C1 78.10 (13) N1—N2—C8—C7 0.66 (19)
O1—Zn—O3—C3 65.51 (14) C10—N2—C8—C7 179.74 (17)
N1—Zn—O3—C3 −144.72 (13) N1—N2—C8—C9 −177.92 (16)
N3—Zn—O3—C3 −63.46 (15) C10—N2—C8—C9 1.2 (3)
O2—Zn—O3—C3 126.78 (13) C18—N3—C10—N2 179.97 (14)
O3—Zn—N1—C6 −55.42 (18) Zn—N3—C10—N2 5.87 (19)
O1—Zn—N1—C6 85.47 (19) C18—N3—C10—C11 −0.4 (3)
N3—Zn—N1—C6 175.51 (19) Zn—N3—C10—C11 −174.50 (13)
O2—Zn—N1—C6 44.64 (18) N1—N2—C10—N3 2.6 (2)
O3—Zn—N1—N2 138.85 (11) C8—N2—C10—N3 −176.44 (17)
O1—Zn—N1—N2 −80.26 (13) N1—N2—C10—C11 −177.04 (15)
N3—Zn—N1—N2 9.79 (11) C8—N2—C10—C11 3.9 (3)
O2—Zn—N1—N2 −121.08 (12) N3—C10—C11—C12 1.6 (3)
C6—N1—N2—C8 −0.80 (18) N2—C10—C11—C12 −178.81 (16)
Zn—N1—N2—C8 169.09 (11) C10—C11—C12—C13 −1.1 (3)
C6—N1—N2—C10 179.95 (14) C11—C12—C13—C18 −0.4 (3)
Zn—N1—N2—C10 −10.16 (18) C11—C12—C13—C14 −179.51 (17)
O3—Zn—N3—C10 −101.18 (13) C12—C13—C14—C15 177.08 (17)
O1—Zn—N3—C10 124.36 (12) C18—C13—C14—C15 −2.0 (3)
N1—Zn—N3—C10 −8.53 (12) C13—C14—C15—C16 1.1 (3)
O2—Zn—N3—C10 65.92 (14) C14—C15—C16—C17 0.7 (3)
O3—Zn—N3—C18 85.24 (15) C15—C16—C17—C18 −1.5 (3)
O1—Zn—N3—C18 −49.22 (14) C10—N3—C18—C17 178.31 (15)
N1—Zn—N3—C18 177.89 (15) Zn—N3—C18—C17 −8.3 (2)
O2—Zn—N3—C18 −107.66 (14) C10—N3—C18—C13 −1.2 (2)
Zn—O2—C1—O1 −1.76 (17) Zn—N3—C18—C13 172.15 (12)
Zn—O2—C1—C2 177.01 (16) C16—C17—C18—N3 −179.02 (16)
Zn—O1—C1—O2 2.01 (19) C16—C17—C18—C13 0.5 (3)
Zn—O1—C1—C2 −176.78 (14) C12—C13—C18—N3 1.6 (2)
Zn—O3—C3—O4 5.5 (2) C14—C13—C18—N3 −179.25 (15)
Zn—O3—C3—C4 −174.94 (12) C12—C13—C18—C17 −177.93 (16)
N2—N1—C6—C7 0.63 (19) C14—C13—C18—C17 1.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4B···O3i 0.98 2.57 3.544 (2) 176
C5—H5A···O2ii 0.98 2.60 3.417 (3) 141
C7—H7···O2ii 0.95 2.56 3.235 (2) 128
C9—H9C···O4iii 0.98 2.36 3.274 (2) 156
C12—H12···O1iv 0.95 2.51 3.310 (2) 142

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6839).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Bai, S.-Q., Young, D. J. & Hor, T. S. A. (2011). Chem. Asian J. 6, 292–304. [DOI] [PubMed]
  4. Bai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971.
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Chou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653–2665.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571–m572. [DOI] [PMC free article] [PubMed]
  9. Savel’eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull., Int. Ed 58, 1837–1840.
  10. Scott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444–3445.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wang, S. (2001). Coord. Chem. Rev. 215, 79–98.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812025664/hb6839sup1.cif

e-68-0m897-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812025664/hb6839Isup2.hkl

e-68-0m897-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES