Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):m911. doi: 10.1107/S1600536812026177

[2-(1-{2-[Aza­nid­yl(ethyl­sulfan­yl)methyl­idene-κN]hydrazin-1-yl­idene-κN 1}eth­yl)phenolato-κO](pyridine-κN)nickel(II)

Reza Takjoo a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3393181  PMID: 22807749

Abstract

The NiII atom in the title complex, [Ni(C11H13N3OS)(C5H5N)], exists within a square-planar N3O donor set provided by N,N′,O atoms of the dianionic tridentate ligand and a pyridine N atom. The maximum deviation from the ideal geometry is seen in the N—Ni—N five-membered chelate bite angle of 83.28 (12)°. The pyridine mol­ecule forms a dihedral angle of 44.43 (6)° with the N3O donor set. Supra­molecular stacks along the a axis mediated by alternating π–π inter­actions between the pyridine and five- [centroid–centroid distance = 3.4784 (16) Å] and six-membered [3.4633 (17) Å] chelate rings, feature in the crystal packing.

Related literature  

For the complexing ability of S-alkyl esters of thio­semicarbazone derivatives, see: Ahmadi et al. (2012). For medicinal applications of thio­semicarbazone, see: Dilworth & Hueting (2012). For a related structure, see: Guveli & Ulkuseven (2011).graphic file with name e-68-0m911-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C11H13N3OS)(C5H5N)]

  • M r = 373.11

  • Orthorhombic, Inline graphic

  • a = 7.2956 (4) Å

  • b = 9.8463 (5) Å

  • c = 21.7489 (11) Å

  • V = 1562.33 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.790, T max = 1.000

  • 6002 measured reflections

  • 3584 independent reflections

  • 3130 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.075

  • S = 1.00

  • 3584 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983), 1501 Friedel pairs

  • Flack parameter: −0.028 (16)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026177/hb6842sup1.cif

e-68-0m911-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026177/hb6842Isup2.hkl

e-68-0m911-Isup2.hkl (175.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—O1 1.828 (2)
Ni—N1 1.861 (2)
Ni—N3 1.845 (3)
Ni—N4 1.918 (2)

Acknowledgments

The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Schiff bases derived from S-alkyl esters of thiosemicarbazone comprise an important class of ligands containing sulfur-nitrogen donor atoms for metals. Thus, they are capable of reacting with both transition and some main group metals (Ahmadi et al., 2012) and may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described.

The NiII atom in (I), Fig. 1, exists within a square planar N3O donor set defined by the N,N,O atoms of the dinegative tridentate ligand and a pyridine-N atom, Table 1. The donor set is planar with a r.m.s. deviation = 0.0323 Å and maximum deviations of 0.0336 (13) and -0.0331 (13) Å for the N3 and N1 atoms, respectively. The Ni atom lies 0.0056 (13) Å out of the plane. The maximum deviations from the ideal geometry are manifested in the N1—Ni—N3 chelate angle of 83.28 (12)°. The pyridine molecule is inclined to the N3O donor set, forming a dihedral angle of 44.43 (6)°. The molecular structure resembles that of the S-methyl ester where the Ni atom is coordinated by Ph3P rather than pyridine (Guveli & Ulkuseven, 2011).

The most notable feature of the crystal packing is the formation of π—π interactions whereby the pyridine links alternating five- [inter-centroid distance = 3.4784 (16) Å, angle of inclination = 4.67 (14)° for symmetry operation: 1/2 + x, 1/2 - y, 2 - z] and six-membered [3.4633 (17) Å and 4.13 (13)° for -1/2 + x, 1/2 - y, 2 - z] chelate rings along the a axis, Fig. 2. Stacks assemble without specific interactions between them, Fig. 3.

Experimental

Nickel acetate tetrahydrate (0.25 g, 1.0 mmol) was added to a solution of 1-(2-hydroxyphenyl)ethanone S-ethylisothiosemicarbazone hydrobromide (0.25 g, 1.0 mmol) in ethanol (10 ml). Three drops of pyridine was added to solution. The red solution was heated under reflux for 1 h. Orange prisms were deposited after 3 days, collected by filtration, washed with ethanol, and dried in air. M. pt: 421 K. Yield: 85%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. Nitrogen-bound H-atom was refined with N—H = 0.88±0.01 Å and free Uiso.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Supramolecular stack along the a axis in (I) mediated by π—π interactions, shown as purple dashed lines.

Fig. 3.

Fig. 3.

A view of the unit-cell contents of (I) in projection down the a axis. The π—π interactions are shown as purple dashed lines.

Crystal data

[Ni(C11H13N3OS)(C5H5N)] F(000) = 776
Mr = 373.11 Dx = 1.586 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2330 reflections
a = 7.2956 (4) Å θ = 2.8–27.5°
b = 9.8463 (5) Å µ = 1.39 mm1
c = 21.7489 (11) Å T = 100 K
V = 1562.33 (14) Å3 Prism, orange
Z = 4 0.35 × 0.10 × 0.05 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3584 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3130 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.8°
ω scan h = −9→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −10→12
Tmin = 0.790, Tmax = 1.000 l = −28→24
6002 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0263P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
3584 reflections Δρmax = 0.45 e Å3
213 parameters Δρmin = −0.39 e Å3
1 restraint Absolute structure: Flack (1983), 1501 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.028 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.14271 (5) 0.31649 (4) 0.939044 (16) 0.00822 (10)
S1 0.36781 (11) 0.04998 (8) 0.79776 (3) 0.01256 (17)
O1 0.0483 (3) 0.4726 (2) 0.97176 (9) 0.0118 (5)
N1 0.1406 (4) 0.3762 (3) 0.85785 (10) 0.0089 (5)
N2 0.2056 (3) 0.2818 (3) 0.81453 (12) 0.0104 (6)
N3 0.2446 (3) 0.1623 (3) 0.90504 (12) 0.0103 (6)
H3n 0.302 (4) 0.099 (3) 0.9257 (13) 0.021 (10)*
N4 0.1443 (4) 0.2372 (3) 1.01959 (10) 0.0089 (5)
C1 −0.0040 (4) 0.5820 (3) 0.94155 (15) 0.0099 (6)
C2 −0.0797 (4) 0.6887 (4) 0.97594 (14) 0.0129 (7)
H2 −0.0866 0.6793 1.0193 0.015*
C3 −0.1441 (4) 0.8058 (3) 0.94965 (13) 0.0131 (6)
H3 −0.1943 0.8759 0.9745 0.016*
C4 −0.1351 (4) 0.8210 (3) 0.88596 (13) 0.0149 (6)
H4 −0.1789 0.9017 0.8671 0.018*
C5 −0.0625 (4) 0.7188 (3) 0.85051 (14) 0.0138 (7)
H5 −0.0596 0.7300 0.8071 0.017*
C6 0.0081 (4) 0.5972 (3) 0.87607 (14) 0.0096 (7)
C7 0.0840 (4) 0.4927 (3) 0.83555 (14) 0.0092 (7)
C8 0.0990 (4) 0.5138 (3) 0.76748 (13) 0.0132 (7)
H8A 0.2278 0.5071 0.7550 0.020*
H8B 0.0517 0.6039 0.7568 0.020*
H8C 0.0273 0.4442 0.7461 0.020*
C9 0.2640 (4) 0.1738 (4) 0.84474 (14) 0.0102 (6)
C10 0.3791 (5) −0.0970 (3) 0.84806 (13) 0.0132 (7)
H10A 0.4728 −0.0826 0.8803 0.016*
H10B 0.2592 −0.1119 0.8682 0.016*
C11 0.4295 (4) −0.2193 (3) 0.80864 (15) 0.0190 (8)
H11A 0.4229 −0.3020 0.8336 0.029*
H11B 0.5544 −0.2081 0.7928 0.029*
H11C 0.3437 −0.2264 0.7741 0.029*
C12 0.0869 (4) 0.1084 (3) 1.02762 (14) 0.0111 (7)
H12 0.0466 0.0583 0.9928 0.013*
C13 0.0843 (4) 0.0461 (4) 1.08490 (15) 0.0188 (8)
H13 0.0408 −0.0444 1.0892 0.023*
C14 0.1455 (5) 0.1168 (4) 1.13532 (14) 0.0188 (8)
H14 0.1469 0.0759 1.1749 0.023*
C15 0.2050 (4) 0.2491 (4) 1.12707 (15) 0.0169 (8)
H15 0.2485 0.3004 1.1611 0.020*
C16 0.2005 (4) 0.3057 (4) 1.06906 (13) 0.0125 (7)
H16 0.2391 0.3972 1.0641 0.015*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.01111 (18) 0.00732 (18) 0.00623 (17) 0.00083 (17) 0.00031 (17) 0.00024 (17)
S1 0.0188 (4) 0.0093 (4) 0.0096 (4) 0.0025 (4) 0.0027 (4) −0.0010 (3)
O1 0.0203 (12) 0.0087 (12) 0.0064 (11) 0.0043 (10) −0.0002 (9) 0.0011 (10)
N1 0.0105 (13) 0.0090 (13) 0.0072 (12) −0.0001 (12) 0.0003 (12) −0.0036 (10)
N2 0.0151 (13) 0.0081 (14) 0.0080 (13) 0.0013 (10) 0.0020 (10) −0.0025 (11)
N3 0.0170 (14) 0.0078 (16) 0.0061 (13) 0.0031 (12) −0.0001 (10) −0.0010 (12)
N4 0.0096 (12) 0.0090 (13) 0.0081 (12) 0.0018 (12) 0.0051 (12) 0.0002 (10)
C1 0.0061 (14) 0.0127 (16) 0.0108 (15) −0.0014 (11) −0.0009 (14) 0.0025 (15)
C2 0.0140 (15) 0.0141 (16) 0.0106 (15) −0.0003 (15) −0.0003 (12) −0.0032 (16)
C3 0.0139 (14) 0.0110 (15) 0.0144 (15) 0.0019 (15) 0.0006 (14) −0.0033 (14)
C4 0.0167 (15) 0.0100 (15) 0.0179 (15) 0.0051 (17) −0.0012 (14) 0.0035 (15)
C5 0.0164 (17) 0.0152 (18) 0.0097 (15) 0.0026 (14) 0.0003 (13) 0.0015 (14)
C6 0.0090 (16) 0.0104 (17) 0.0093 (15) −0.0017 (13) 0.0011 (12) −0.0011 (14)
C7 0.0066 (15) 0.0084 (16) 0.0126 (16) −0.0021 (12) −0.0020 (12) −0.0019 (14)
C8 0.0187 (18) 0.0131 (17) 0.0077 (15) 0.0049 (14) −0.0025 (13) 0.0011 (14)
C9 0.0082 (15) 0.0120 (17) 0.0104 (15) −0.0008 (14) −0.0010 (12) −0.0025 (16)
C10 0.0174 (18) 0.0089 (15) 0.0132 (15) 0.0047 (14) 0.0009 (14) 0.0001 (13)
C11 0.0280 (19) 0.0109 (18) 0.0181 (18) 0.0032 (14) 0.0036 (15) 0.0003 (15)
C12 0.0129 (17) 0.0114 (17) 0.0090 (15) −0.0011 (13) 0.0004 (13) −0.0012 (14)
C13 0.0182 (18) 0.0155 (18) 0.0227 (19) 0.0041 (14) 0.0057 (14) 0.0061 (16)
C14 0.0195 (18) 0.025 (2) 0.0120 (16) 0.0090 (17) 0.0079 (16) 0.0119 (15)
C15 0.0157 (18) 0.025 (2) 0.0106 (17) 0.0043 (15) −0.0012 (13) −0.0015 (16)
C16 0.0138 (15) 0.0130 (16) 0.0107 (15) 0.0023 (13) −0.0003 (12) −0.0031 (16)

Geometric parameters (Å, º)

Ni—O1 1.828 (2) C5—C6 1.416 (4)
Ni—N1 1.861 (2) C5—H5 0.9500
Ni—N3 1.845 (3) C6—C7 1.464 (4)
Ni—N4 1.918 (2) C7—C8 1.499 (4)
S1—C9 1.762 (3) C8—H8A 0.9800
S1—C10 1.816 (3) C8—H8B 0.9800
O1—C1 1.318 (4) C8—H8C 0.9800
N1—C7 1.312 (4) C10—C11 1.523 (4)
N1—N2 1.405 (3) C10—H10A 0.9900
N2—C9 1.321 (4) C10—H10B 0.9900
N3—C9 1.324 (4) C11—H11A 0.9800
N3—H3n 0.871 (10) C11—H11B 0.9800
N4—C16 1.334 (4) C11—H11C 0.9800
N4—C12 1.347 (4) C12—C13 1.389 (4)
C1—C2 1.403 (4) C12—H12 0.9500
C1—C6 1.435 (4) C13—C14 1.373 (5)
C2—C3 1.371 (4) C13—H13 0.9500
C2—H2 0.9500 C14—C15 1.385 (5)
C3—C4 1.395 (4) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.380 (4)
C4—C5 1.374 (4) C15—H15 0.9500
C4—H4 0.9500 C16—H16 0.9500
O1—Ni—N3 178.07 (11) C6—C7—C8 121.6 (3)
O1—Ni—N1 95.77 (11) C7—C8—H8A 109.5
N3—Ni—N1 83.28 (12) C7—C8—H8B 109.5
O1—Ni—N4 89.37 (10) H8A—C8—H8B 109.5
N3—Ni—N4 91.65 (11) C7—C8—H8C 109.5
N1—Ni—N4 174.40 (12) H8A—C8—H8C 109.5
C9—S1—C10 102.80 (15) H8B—C8—H8C 109.5
C1—O1—Ni 127.0 (2) N2—C9—N3 121.8 (3)
C7—N1—N2 115.9 (2) N2—C9—S1 114.1 (2)
C7—N1—Ni 129.0 (2) N3—C9—S1 124.2 (3)
N2—N1—Ni 115.11 (19) C11—C10—S1 107.6 (2)
C9—N2—N1 107.9 (2) C11—C10—H10A 110.2
C9—N3—Ni 111.7 (2) S1—C10—H10A 110.2
C9—N3—H3n 121 (2) C11—C10—H10B 110.2
Ni—N3—H3n 125 (2) S1—C10—H10B 110.2
C16—N4—C12 117.9 (3) H10A—C10—H10B 108.5
C16—N4—Ni 122.2 (2) C10—C11—H11A 109.5
C12—N4—Ni 120.0 (2) C10—C11—H11B 109.5
O1—C1—C2 117.4 (3) H11A—C11—H11B 109.5
O1—C1—C6 124.2 (3) C10—C11—H11C 109.5
C2—C1—C6 118.4 (3) H11A—C11—H11C 109.5
C3—C2—C1 122.9 (3) H11B—C11—H11C 109.5
C3—C2—H2 118.6 N4—C12—C13 122.4 (3)
C1—C2—H2 118.6 N4—C12—H12 118.8
C2—C3—C4 119.2 (3) C13—C12—H12 118.8
C2—C3—H3 120.4 C14—C13—C12 119.2 (3)
C4—C3—H3 120.4 C14—C13—H13 120.4
C5—C4—C3 119.8 (3) C12—C13—H13 120.4
C5—C4—H4 120.1 C13—C14—C15 118.4 (3)
C3—C4—H4 120.1 C13—C14—H14 120.8
C4—C5—C6 122.6 (3) C15—C14—H14 120.8
C4—C5—H5 118.7 C16—C15—C14 119.4 (3)
C6—C5—H5 118.7 C16—C15—H15 120.3
C5—C6—C1 117.1 (3) C14—C15—H15 120.3
C5—C6—C7 119.7 (3) N4—C16—C15 122.7 (3)
C1—C6—C7 123.2 (3) N4—C16—H16 118.7
N1—C7—C6 120.8 (3) C15—C16—H16 118.7
N1—C7—C8 117.6 (3)
N1—Ni—O1—C1 2.0 (3) O1—C1—C6—C7 −1.2 (5)
N4—Ni—O1—C1 −175.7 (2) C2—C1—C6—C7 −179.9 (3)
O1—Ni—N1—C7 −1.2 (3) N2—N1—C7—C6 178.1 (2)
N3—Ni—N1—C7 −179.5 (3) Ni—N1—C7—C6 −0.5 (4)
O1—Ni—N1—N2 −179.8 (2) N2—N1—C7—C8 −1.6 (4)
N3—Ni—N1—N2 1.9 (2) Ni—N1—C7—C8 179.9 (2)
C7—N1—N2—C9 177.3 (3) C5—C6—C7—N1 −176.1 (3)
Ni—N1—N2—C9 −3.9 (3) C1—C6—C7—N1 2.0 (5)
N1—Ni—N3—C9 0.7 (2) C5—C6—C7—C8 3.5 (4)
N4—Ni—N3—C9 178.3 (2) C1—C6—C7—C8 −178.3 (3)
O1—Ni—N4—C16 −43.2 (2) N1—N2—C9—N3 4.8 (4)
N3—Ni—N4—C16 135.2 (2) N1—N2—C9—S1 −175.12 (19)
O1—Ni—N4—C12 136.6 (2) Ni—N3—C9—N2 −3.5 (4)
N3—Ni—N4—C12 −45.0 (2) Ni—N3—C9—S1 176.45 (17)
Ni—O1—C1—C2 177.51 (19) C10—S1—C9—N2 −166.5 (2)
Ni—O1—C1—C6 −1.1 (4) C10—S1—C9—N3 13.6 (3)
O1—C1—C2—C3 −178.0 (3) C9—S1—C10—C11 168.3 (2)
C6—C1—C2—C3 0.7 (5) C16—N4—C12—C13 0.1 (4)
C1—C2—C3—C4 0.1 (5) Ni—N4—C12—C13 −179.7 (2)
C2—C3—C4—C5 0.1 (5) N4—C12—C13—C14 −1.2 (5)
C3—C4—C5—C6 −1.2 (5) C12—C13—C14—C15 1.0 (5)
C4—C5—C6—C1 1.9 (5) C13—C14—C15—C16 0.2 (5)
C4—C5—C6—C7 −179.8 (3) C12—N4—C16—C15 1.2 (5)
O1—C1—C6—C5 177.0 (3) Ni—N4—C16—C15 −179.0 (2)
C2—C1—C6—C5 −1.6 (4) C14—C15—C16—N4 −1.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6842).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Guveli, S. & Ulkuseven, B. (2011). Polyhedron, 30, 1385–1388.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026177/hb6842sup1.cif

e-68-0m911-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026177/hb6842Isup2.hkl

e-68-0m911-Isup2.hkl (175.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES