Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):m933–m934. doi: 10.1107/S1600536812024683

Poly[μ2-aqua-μ2-(pyrazine-2-carboxyl­ato)-lithium]

Wojciech Starosta a, Janusz Leciejewicz a,*
PMCID: PMC3393196  PMID: 22807764

Abstract

The structure of the title compound, [Li(C5H3N2O2)(H2O)]n, contains an LiI ion with a distorted trigonal–bipyramidal coordination environment involving the N and O atoms of pyrazine-2-carboxyl­ate ligands with a bridging carboxyl­ate group, and two aqua O atoms also in a bridging mode. The symmetry-related LiI ions bridged by a carboxyl­ate O atom and a coordinating water O atom form an Li2O2 unit with an Li⋯Li distance of 3.052 (4) Å, which generates mol­ecular ribbons propagating in the c-axis direction. The ribbons are held together by a network of O—H⋯O hydrogen bonds in which the coordinating water mol­ecules act as donors and the carboxyl­ate O atoms as acceptors.

Related literature  

For the crystal structure of an LiI complex with a 3-amino­pyrazine-2-carboxyl­ate ligand, see: Starosta & Leciejewicz, (2010) and for the crystal structure of an LiI complex with a 5-methyl­pyrazine-2-carboxyl­ate ligand, see: Starosta & Lecieje­wicz, (2011a ). The structures of complexes with pyrid­azine-3-carboxyl­ate and pyridazine-4-carboxyl­ate ligands were reported by Starosta & Leciejewicz, (2011b,c ). The structure of a complex with a pyrimidine-2-carboxyl­ate ligand was also determined (Starosta & Leciejewicz, 2011d ).graphic file with name e-68-0m933-scheme1.jpg

Experimental  

Crystal data  

  • [Li(C5H3N2O2)(H2O)]

  • M r = 148.05

  • Orthorhombic, Inline graphic

  • a = 24.433 (5) Å

  • b = 4.7861 (10) Å

  • c = 5.6385 (11) Å

  • V = 659.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.18 × 0.13 mm

Data collection  

  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.972, T max = 0.995

  • 1586 measured reflections

  • 1056 independent reflections

  • 813 reflections with I > 2σ(I)

  • R int = 0.078

  • 3 standard reflections every 200 reflections intensity decay: 4.4%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.116

  • S = 1.09

  • 1056 reflections

  • 108 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024683/kp2421sup1.cif

e-68-0m933-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024683/kp2421Isup2.hkl

e-68-0m933-Isup2.hkl (52.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024683/kp2421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Li1—O1 2.080 (6)
Li1—N1 2.190 (6)
Li1—O3 2.013 (6)
Li1—O3i 2.032 (5)
Li1—O1i 2.237 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1ii 0.83 (5) 1.96 (5) 2.786 (3) 176 (5)
O3—H32⋯O2iii 0.94 (4) 1.75 (4) 2.672 (3) 167 (4)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The structure of the title complex is built of LiI ions, each coordinated by ligand with N1,O1 where O atom acts as bidentate and bridging to symmetry related Li1 and Li1i ions, whereas the O2 atom remains chelating inactive. The metal ions are also bridged by coordinated water O3 atom forming a Li1—O1—Li1i—O3—Li1 connectivity with Li1—Li1i distance of 3.052 (4) Å, (Fig.1). The observed bonding pathways –Li—Ocarb—Li- and –Li—Oaqua—Li- give rise to molecular ribbon which propagates in the unit cell c direction (Fig. 2). The Li1 coordination polyhedron is distorted trigonal bipyramid (Fig. 1, Table 1) with an equatorial plane composed of O1, N1i and O3i; the Li1 ion is 0.0405 (2) Å out of the plane, O1 and O3 atoms are at the axial positions. The pyrazine ring is planar with r.m.s. of 0.0019 (1) Å; the dihedral angle between the pyrazine and the carboxylato group (C7/O1/O2) is 12.3 (1)°. Hydrogen bonds are realised through coordinated aqua O3 and carboxylato O2 atoms (Table 2, Fig. 2). Weak C—H···N interactions of 3.518 (5) Å and 3.651 (5) Å are observed. The structures of LiI complexes with diazine monocarboxylate ligands show a variety of polymeric patterns. The structure of a complex with 3-aminopyrazine-2-carboxylato ligand shows a catenated pattern (Starosta & Leciejewicz, 2010) while the structure of a complex with 5-methylpyrazine-2-carboxylato ligand is composed of molecular columns (Starosta & Leciejewicz, 2011a). Molecular layers were reported in the structure of a complex with pyrimidine-2-carboxylato and nitrato ligands (Starosta & Leciejewicz, 2011d) and in the structure of a complex with pyridazine-4-carboxylato ligand (Starosta & Leciejewicz, 2011c). On the other hand, the structure of a complex with pyridazine-3-carboxylato ligand is built of monomeric molecules (Starosta & Leciejewicz, 2011b).

Experimental

50 mL of a solution containing 1 mmol of LiNO3 and an excess of pyrazine-2-carboxylic acid dihydrate to mantain pH ca 5.1 was boiled under reflux with stirring for 10 h, then left to crystallise at room temperature. After a couple of days single-crystal blocks of the title compound were detected among polycrystalline material. They were washed with methanol and dried in the air.

Refinement

Water hydrogen atoms were located in a difference map and refined isotropically while H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Two structural units of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x + 1/2, y, z - 1/2; (ii) -x + 1/2, y, z + 1/2.

Fig. 2.

Fig. 2.

Packing diagram of the structure viewed along the c axis.

Crystal data

[Li(C5H3N2O2)(H2O)] F(000) = 304
Mr = 148.05 Dx = 1.491 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 25 reflections
a = 24.433 (5) Å θ = 6–15°
b = 4.7861 (10) Å µ = 0.12 mm1
c = 5.6385 (11) Å T = 293 K
V = 659.4 (2) Å3 Blocks, colourless
Z = 4 0.35 × 0.18 × 0.13 mm

Data collection

Kuma KM-4 four-cricle diffractometer 813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.078
Graphite monochromator θmax = 30.1°, θmin = 1.7°
profile data from ω/2θ scans h = −27→34
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = 0→6
Tmin = 0.972, Tmax = 0.995 l = 0→7
1586 measured reflections 3 standard reflections every 200 reflections
1056 independent reflections intensity decay: 4.4%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.4211P] where P = (Fo2 + 2Fc2)/3
1056 reflections (Δ/σ)max < 0.001
108 parameters Δρmax = 0.31 e Å3
1 restraint Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.28627 (9) 1.1874 (4) 0.7415 (4) 0.0324 (4)
O2 0.35150 (10) 1.3781 (5) 0.5168 (5) 0.0480 (7)
N1 0.36091 (10) 0.8665 (5) 0.9601 (5) 0.0320 (5)
C2 0.37639 (11) 1.0110 (5) 0.7680 (5) 0.0258 (5)
C7 0.33500 (11) 1.2093 (5) 0.6658 (5) 0.0281 (5)
C5 0.44910 (14) 0.6601 (7) 0.9486 (7) 0.0453 (8)
H5 0.4735 0.5346 1.0167 0.054*
N2 0.46487 (12) 0.8025 (6) 0.7586 (6) 0.0462 (7)
C6 0.39802 (14) 0.6901 (7) 1.0492 (6) 0.0414 (7)
H6 0.3892 0.5851 1.1825 0.050*
C3 0.42814 (12) 0.9788 (7) 0.6705 (6) 0.0364 (6)
H3 0.4375 1.0848 0.5383 0.044*
Li1 0.2739 (2) 0.9324 (11) 1.0354 (10) 0.0338 (10)
O3 0.22904 (9) 0.6809 (4) 0.8254 (4) 0.0282 (4)
H31 0.247 (3) 0.538 (8) 0.796 (9) 0.051 (11)*
H32 0.1986 (18) 0.599 (8) 0.901 (7) 0.046 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0283 (8) 0.0332 (9) 0.0358 (10) 0.0041 (8) 0.0052 (9) 0.0123 (10)
O2 0.0369 (11) 0.0567 (13) 0.0504 (15) 0.0051 (10) 0.0081 (11) 0.0333 (12)
N1 0.0324 (12) 0.0371 (11) 0.0265 (11) 0.0009 (10) 0.0033 (11) 0.0109 (10)
C2 0.0244 (10) 0.0276 (10) 0.0254 (11) −0.0016 (10) 0.0010 (10) 0.0055 (10)
C7 0.0288 (11) 0.0282 (11) 0.0274 (12) 0.0006 (10) 0.0000 (11) 0.0069 (12)
C5 0.0361 (16) 0.0481 (17) 0.0517 (19) 0.0118 (14) −0.0062 (17) 0.0153 (16)
N2 0.0333 (13) 0.0540 (16) 0.0514 (17) 0.0105 (12) 0.0064 (13) 0.0105 (16)
C6 0.0388 (16) 0.0493 (17) 0.0362 (15) 0.0036 (13) −0.0019 (14) 0.0205 (15)
C3 0.0311 (13) 0.0433 (15) 0.0347 (14) 0.0014 (12) 0.0098 (13) 0.0093 (14)
Li1 0.036 (3) 0.040 (2) 0.026 (2) −0.002 (2) 0.001 (2) 0.007 (2)
O3 0.0328 (9) 0.0287 (9) 0.0230 (8) −0.0004 (8) 0.0014 (8) 0.0075 (9)

Geometric parameters (Å, º)

O1—C7 1.269 (4) N2—C3 1.328 (4)
Li1—O1 2.080 (6) C6—H6 0.9300
O1—Li1i 2.237 (6) C3—H3 0.9300
O2—C7 1.233 (4) Li1—O3 2.013 (6)
N1—C6 1.337 (4) Li1—O3ii 2.032 (5)
N1—C2 1.340 (4) Li1—O1ii 2.237 (6)
Li1—N1 2.190 (6) Li1—Li1i 3.052 (4)
C2—C3 1.387 (4) Li1—Li1ii 3.052 (4)
C2—C7 1.502 (4) O3—Li1i 2.032 (5)
C5—N2 1.327 (5) O3—H31 0.83 (5)
C5—C6 1.379 (5) O3—H32 0.94 (4)
C5—H5 0.9300
C7—O1—Li1 116.9 (2) O3—Li1—N1 109.2 (3)
C7—O1—Li1i 119.2 (2) O3ii—Li1—N1 96.0 (2)
Li1—O1—Li1i 89.92 (19) O1—Li1—N1 77.8 (2)
C6—N1—C2 116.0 (3) O3—Li1—O1ii 105.9 (3)
C6—N1—Li1 132.6 (3) O3ii—Li1—O1ii 83.2 (2)
C2—N1—Li1 110.9 (2) O1—Li1—O1ii 100.9 (2)
N1—C2—C3 121.4 (3) N1—Li1—O1ii 144.8 (3)
N1—C2—C7 116.5 (2) O3—Li1—Li1i 41.25 (17)
C3—C2—C7 122.1 (2) O3ii—Li1—Li1i 136.9 (2)
O2—C7—O1 126.1 (3) O1—Li1—Li1i 47.12 (13)
O2—C7—C2 117.1 (3) N1—Li1—Li1i 101.1 (2)
O1—C7—C2 116.8 (2) O1ii—Li1—Li1i 103.2 (3)
N2—C5—C6 122.8 (3) O3—Li1—Li1ii 109.5 (3)
N2—C5—H5 118.6 O3ii—Li1—Li1ii 40.79 (14)
C6—C5—H5 118.6 O1—Li1—Li1ii 142.33 (19)
C5—N2—C3 115.6 (3) N1—Li1—Li1ii 123.4 (3)
N1—C6—C5 121.7 (3) O1ii—Li1—Li1ii 42.96 (17)
N1—C6—H6 119.2 Li1i—Li1—Li1ii 135.0 (4)
C5—C6—H6 119.2 Li1—O3—Li1i 98.0 (2)
N2—C3—C2 122.5 (3) Li1—O3—H31 109 (4)
N2—C3—H3 118.7 Li1i—O3—H31 110 (3)
C2—C3—H3 118.7 Li1—O3—H32 114 (3)
O3—Li1—O3ii 95.7 (2) Li1i—O3—H32 126 (2)
O3—Li1—O1 87.8 (2) H31—O3—H32 100 (4)
O3ii—Li1—O1 173.7 (3)

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H31···O1iii 0.83 (5) 1.96 (5) 2.786 (3) 176 (5)
O3—H32···O2iv 0.94 (4) 1.75 (4) 2.672 (3) 167 (4)

Symmetry codes: (iii) x, y−1, z; (iv) −x+1/2, y−1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2421).

References

  1. Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  2. Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  3. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744–m745. [DOI] [PMC free article] [PubMed]
  6. Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m1000–m1001. [DOI] [PMC free article] [PubMed]
  7. Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m202. [DOI] [PMC free article] [PubMed]
  8. Starosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m425–m426. [DOI] [PMC free article] [PubMed]
  9. Starosta, W. & Leciejewicz, J. (2011d). Acta Cryst. E67, m818. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812024683/kp2421sup1.cif

e-68-0m933-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024683/kp2421Isup2.hkl

e-68-0m933-Isup2.hkl (52.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812024683/kp2421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES