Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 16;68(Pt 7):m940–m941. doi: 10.1107/S1600536812026864

Bis(methanol-1κO)tetra-μ-pyridazine-1:2κ4 N:N′;2:3κ4 N:N′-di-μ-thio­cyanato-1:2κ2 N:N;2:3κ2 N:N-tetrathio­cyanato-1κ2 N,3κ2 N-trinickel(II) methanol tetra­solvate

Susanne Wöhlert a,*, Inke Jess a, Christian Näther a
PMCID: PMC3393200  PMID: 22807768

Abstract

Reaction of an excess nickel(II) thio­cyanate with pyridazine leads to single crystals of the title compound, [Ni3(NCS)6(N2C4H4)4(CH3OH)2]·4CH3OH. The crystal structure consists of trimeric discrete complexes, in which two NiII cations are coordinated by two terminal and one μ-1,1 bridging thio­cyanato anions, one methanol mol­ecule and two bridging pyridazine ligands, whereas the central NiII atom is coordinated by two μ-1,1 bridging anions as well as four bridging pyridazine ligands. The asymmetric unit consists of two crystallographically independent Ni cations, one of which is located on a center of inversion, as well as three crystallographically independent thio­cyanato anions, two pyridazine ligands and three independent methanol mol­ecules in general positions. Two of the solvent mol­ecules do not coordinate to the metal atoms and are located in cavities of the structure. The discrete complexes are linked by inter­molecular O—H⋯O and O—H⋯S hydrogen bonding into layers parallel to the bc plane.

Related literature  

For the background to this work and the synthesis of bridging thio­cyanato coordination compounds, see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011). For structures of related trinuclear complexes, see: Wriedt & Näther (2009); Yi et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). graphic file with name e-68-0m940-scheme1.jpg

Experimental  

Crystal data  

  • [Ni3(NCS)6(C4H4N2)4(CH4O)2]·4CH4O

  • M r = 1037.23

  • Orthorhombic, Inline graphic

  • a = 17.6689 (12) Å

  • b = 15.0760 (7) Å

  • c = 17.9479 (10) Å

  • V = 4780.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 200 K

  • 0.13 × 0.09 × 0.07 mm

Data collection  

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) T min = 0.746, T max = 0.818

  • 31891 measured reflections

  • 4093 independent reflections

  • 3190 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.05

  • 4093 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026864/hp2040sup1.cif

e-68-0m940-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026864/hp2040Isup2.hkl

e-68-0m940-Isup2.hkl (200.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—N3 2.024 (3)
Ni1—N1 2.031 (3)
Ni1—O1 2.067 (3)
Ni1—N10 2.110 (3)
Ni1—N20 2.128 (3)
Ni1—N2 2.132 (3)
Ni2—N21 2.099 (3)
Ni2—N2 2.114 (3)
Ni2—N11 2.121 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.84 1.84 2.671 (4) 171
O2—H1O2⋯O3 0.84 1.91 2.691 (9) 155
O3—H1O3⋯S1 0.84 2.45 3.285 (6) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Comment

The structure determination of the title compound was performed within a project on the synthesis of transition metal coordination compounds in which the metal centers are linked by bridging anionic ligands (Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011)). Within this project we reported on two modification of a trinuclear complex based on nickel(II) thiocyanate and pyridazine (Wriedt & Näther (2009)). In further investigations we have reacted nickel(II) thiocyanate with pyridazine in methanol which results in the formation of single-crystals of the title compound, which were characterized by single-crystal X-ray diffraction. The asymmetric unit of the title compound consists of two nickel(II) cations, one of them is located on a center of inversion, three thiocyanato anions, two pyridazine ligands and three methanol molecules all of them located in general position (Fig. 1). In the crystal structure two crystallographic independent nickel(II) cations are present. Ni1 is coordinated by two terminal N-bonded and one µ-1,1 bridging thiocyanato anions, one methanol molecule and two bridging pyridazine ligands in a slightly distorted octahedral geometry (Tab. 1). Ni2 is coordinated by two µ-1,1 bridging thiocyanato anions and four pyridazine ligands and the coordination environment can also be described as a sligthly distorted octahedron (Tab. 1). The nickel(II) cations are connected through µ-1,1 bridging thiocyanato anions and the two µ2-N,N pyridazine ligands into trimeric units. The Ni—N distances are in range of 2.025 (3) Å to 2.133 (3) Å with angles between 86.53 (12) ° to 180 ° (Tab. 1). The intramolecular Ni···Ni distances amount to 3.3349 (4) Å. The crystal structure contains additional methanol molecules located in cavities of the structure which are not coordinated to the metal cations. These methanol molecules are linked by intermolecular O—H···O and O—H···S hydrogen bonding to the metal complexes forming layers which are parallel to the b-c plane (Fig. 2 and Tab. 2). It must be noted that according to a search in the CCDC database (CONQUEST Ver. 1 12.2010) (Allen, 2002) a trinuclear complex with cobalt(II) thiocyanate and pyridazine was reported by Yi et al. (2006).

Experimental

Nickel(II) thiocyanate (Ni(NCS)2) and pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.5 mmol (87.0 mg) and 0.125 mmol (9.1 µL) pyridazine were reacted in 0.5 ml methanol. Green single crystals of the title compound were obtained after two days.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 for aromatic and 0.98 Å for methyl H atoms. The O—H H atoms were located in difference map, their bond lengths set to ideal values of 0.84 Å and afterwards they were refined using a riding model with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: i = -x + 1, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

: Crystal structure of the title compound with view along the a-axis. Intermolecular O—H···O and O—H···S hydrogen bonding is shown as dashed lines.

Crystal data

[Ni3(NCS)6(C4H4N2)4(CH4O)2]·4CH4O F(000) = 2136
Mr = 1037.23 Dx = 1.441 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 31891 reflections
a = 17.6689 (12) Å θ = 2.6–25.0°
b = 15.0760 (7) Å µ = 1.48 mm1
c = 17.9479 (10) Å T = 200 K
V = 4780.9 (5) Å3 Block, green
Z = 4 0.13 × 0.09 × 0.07 mm

Data collection

Stoe IPDS-1 diffractometer 4093 independent reflections
Radiation source: fine-focus sealed tube 3190 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
phi scan θmax = 25.0°, θmin = 2.6°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) h = −21→21
Tmin = 0.746, Tmax = 0.818 k = −17→16
31891 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.058P)2 + 2.6878P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4093 reflections Δρmax = 0.34 e Å3
263 parameters Δρmin = −0.52 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0022 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.34256 (2) 0.62044 (3) 0.48362 (3) 0.03445 (16)
Ni2 0.5000 0.5000 0.5000 0.02852 (17)
N1 0.28878 (17) 0.7219 (2) 0.5360 (2) 0.0472 (8)
C1 0.2580 (2) 0.7648 (3) 0.5794 (2) 0.0458 (9)
S1 0.21556 (8) 0.82484 (12) 0.64235 (8) 0.0843 (5)
N2 0.40392 (14) 0.51597 (19) 0.43107 (17) 0.0323 (6)
C2 0.38567 (18) 0.4742 (3) 0.3823 (2) 0.0404 (9)
S2 0.36077 (8) 0.41172 (10) 0.31352 (7) 0.0706 (4)
N3 0.24364 (17) 0.5553 (2) 0.46794 (19) 0.0472 (8)
C3 0.1898 (2) 0.5208 (3) 0.44548 (19) 0.0376 (8)
S3 0.11289 (6) 0.47346 (8) 0.41480 (6) 0.0539 (3)
N10 0.36318 (14) 0.5577 (2) 0.58671 (16) 0.0340 (7)
N11 0.42715 (14) 0.50917 (19) 0.59358 (16) 0.0322 (6)
C10 0.3176 (2) 0.5655 (3) 0.6453 (2) 0.0434 (9)
H10 0.2721 0.5982 0.6397 0.052*
C11 0.3333 (2) 0.5282 (3) 0.7143 (2) 0.0500 (10)
H11 0.3003 0.5367 0.7556 0.060*
C12 0.3977 (2) 0.4789 (3) 0.7208 (2) 0.0471 (10)
H12 0.4109 0.4513 0.7666 0.057*
C13 0.4432 (2) 0.4704 (3) 0.65802 (19) 0.0381 (8)
H13 0.4878 0.4354 0.6614 0.046*
N20 0.44811 (15) 0.6868 (2) 0.49603 (16) 0.0351 (6)
N21 0.51239 (15) 0.63848 (19) 0.49894 (15) 0.0319 (6)
C20 0.4517 (2) 0.7741 (3) 0.4989 (2) 0.0448 (9)
H20 0.4059 0.8070 0.4978 0.054*
C21 0.5200 (2) 0.8203 (3) 0.5035 (2) 0.0516 (10)
H21 0.5210 0.8833 0.5049 0.062*
C22 0.5851 (2) 0.7719 (3) 0.5060 (2) 0.0459 (9)
H22 0.6331 0.7998 0.5096 0.055*
C23 0.57830 (18) 0.6801 (2) 0.50301 (19) 0.0361 (8)
H23 0.6232 0.6454 0.5039 0.043*
O1 0.33376 (15) 0.6840 (2) 0.38195 (16) 0.0551 (8)
H1O1 0.3691 0.6885 0.3509 0.083*
C30 0.2715 (3) 0.7345 (4) 0.3553 (3) 0.0757 (16)
H30A 0.2612 0.7833 0.3899 0.114*
H30B 0.2268 0.6964 0.3516 0.114*
H30C 0.2837 0.7586 0.3060 0.114*
O2 0.4433 (2) 0.8203 (3) 0.7794 (2) 0.0830 (12)
H1O2 0.4144 0.8368 0.7449 0.125*
C31 0.4798 (6) 0.7414 (7) 0.7589 (6) 0.175 (5)
H31A 0.5099 0.7515 0.7139 0.263*
H31B 0.4419 0.6953 0.7492 0.263*
H31C 0.5131 0.7221 0.7995 0.263*
O3 0.3907 (4) 0.8965 (6) 0.6541 (4) 0.155 (3)
H1O3 0.3461 0.8779 0.6501 0.232*
C32 0.4027 (5) 0.9850 (8) 0.6309 (5) 0.139 (4)
H32A 0.3727 1.0251 0.6622 0.209*
H32B 0.3871 0.9915 0.5788 0.209*
H32C 0.4564 0.9998 0.6358 0.209*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0228 (2) 0.0333 (3) 0.0473 (3) 0.00354 (17) −0.00013 (17) −0.00294 (19)
Ni2 0.0208 (3) 0.0264 (3) 0.0384 (3) 0.0023 (2) 0.0014 (2) −0.0010 (2)
N1 0.0294 (15) 0.042 (2) 0.070 (2) 0.0081 (14) −0.0004 (15) −0.0047 (16)
C1 0.0334 (18) 0.041 (3) 0.063 (2) 0.0136 (17) −0.0067 (17) −0.0058 (19)
S1 0.0679 (8) 0.1127 (13) 0.0722 (8) 0.0446 (8) −0.0053 (6) −0.0333 (8)
N2 0.0231 (13) 0.0239 (16) 0.0501 (18) 0.0047 (11) 0.0058 (12) 0.0018 (13)
C2 0.0242 (17) 0.046 (2) 0.050 (2) 0.0069 (15) 0.0033 (15) 0.0134 (19)
S2 0.0730 (8) 0.0795 (10) 0.0592 (7) −0.0096 (7) −0.0096 (6) −0.0177 (6)
N3 0.0301 (16) 0.051 (2) 0.060 (2) −0.0013 (14) −0.0017 (14) −0.0052 (16)
C3 0.0341 (18) 0.036 (2) 0.0425 (19) 0.0008 (16) 0.0020 (15) 0.0024 (15)
S3 0.0455 (6) 0.0616 (8) 0.0546 (6) −0.0195 (5) −0.0071 (4) 0.0018 (5)
N10 0.0232 (13) 0.0337 (18) 0.0451 (16) 0.0009 (11) 0.0038 (11) −0.0057 (12)
N11 0.0244 (13) 0.0290 (17) 0.0430 (15) 0.0017 (11) 0.0010 (11) −0.0024 (12)
C10 0.0339 (18) 0.046 (2) 0.051 (2) 0.0026 (16) 0.0093 (16) −0.0062 (17)
C11 0.047 (2) 0.054 (3) 0.049 (2) −0.0013 (19) 0.0137 (17) −0.0095 (18)
C12 0.046 (2) 0.057 (3) 0.0386 (19) −0.0019 (19) 0.0024 (16) −0.0018 (17)
C13 0.0321 (17) 0.039 (2) 0.0428 (19) 0.0007 (15) 0.0031 (15) 0.0005 (15)
N20 0.0281 (14) 0.0290 (18) 0.0481 (17) 0.0037 (12) −0.0010 (12) −0.0002 (12)
N21 0.0214 (13) 0.0326 (16) 0.0415 (15) 0.0031 (11) 0.0010 (11) 0.0007 (11)
C20 0.0324 (18) 0.030 (2) 0.072 (3) 0.0039 (14) 0.0003 (17) 0.0004 (18)
C21 0.046 (2) 0.030 (2) 0.079 (3) −0.0041 (17) −0.003 (2) 0.0016 (18)
C22 0.0332 (18) 0.037 (2) 0.067 (3) −0.0069 (15) −0.0010 (17) 0.0002 (18)
C23 0.0241 (16) 0.034 (2) 0.050 (2) −0.0011 (13) 0.0007 (14) 0.0031 (15)
O1 0.0385 (15) 0.065 (2) 0.0616 (17) 0.0151 (13) 0.0002 (12) 0.0150 (14)
C30 0.052 (3) 0.101 (5) 0.074 (3) 0.032 (3) −0.011 (2) 0.019 (3)
O2 0.063 (2) 0.092 (3) 0.094 (3) −0.019 (2) 0.0164 (19) −0.035 (2)
C31 0.180 (10) 0.115 (8) 0.231 (12) 0.009 (7) 0.093 (9) −0.047 (8)
O3 0.107 (4) 0.235 (9) 0.122 (5) −0.031 (5) −0.010 (4) −0.054 (5)
C32 0.080 (5) 0.248 (13) 0.090 (5) −0.007 (7) 0.005 (4) −0.025 (7)

Geometric parameters (Å, º)

Ni1—N3 2.024 (3) C13—H13 0.9500
Ni1—N1 2.031 (3) N20—C20 1.319 (5)
Ni1—O1 2.067 (3) N20—N21 1.350 (4)
Ni1—N10 2.110 (3) N21—C23 1.325 (4)
Ni1—N20 2.128 (3) C20—C21 1.395 (6)
Ni1—N2 2.132 (3) C20—H20 0.9500
Ni2—N21i 2.099 (3) C21—C22 1.363 (6)
Ni2—N21 2.099 (3) C21—H21 0.9500
Ni2—N2 2.114 (3) C22—C23 1.391 (5)
Ni2—N2i 2.114 (3) C22—H22 0.9500
Ni2—N11i 2.121 (3) C23—H23 0.9500
Ni2—N11 2.121 (3) O1—C30 1.420 (5)
N1—C1 1.149 (5) O1—H1O1 0.8399
C1—S1 1.631 (4) C30—H30A 0.9800
N2—C2 1.126 (5) C30—H30B 0.9800
C2—S2 1.614 (5) C30—H30C 0.9800
N3—C3 1.156 (5) O2—C31 1.403 (9)
C3—S3 1.631 (4) O2—H1O2 0.8399
N10—C10 1.329 (5) C31—H31A 0.9800
N10—N11 1.352 (4) C31—H31B 0.9800
N11—C13 1.327 (5) C31—H31C 0.9800
C10—C11 1.388 (6) O3—C32 1.413 (11)
C10—H10 0.9500 O3—H1O3 0.8401
C11—C12 1.364 (6) C32—H32A 0.9800
C11—H11 0.9500 C32—H32B 0.9800
C12—C13 1.391 (5) C32—H32C 0.9800
C12—H12 0.9500
N3—Ni1—N1 91.48 (13) C10—C11—H11 121.2
N3—Ni1—O1 92.14 (13) C11—C12—C13 117.6 (4)
N1—Ni1—O1 91.36 (13) C11—C12—H12 121.2
N3—Ni1—N10 93.07 (13) C13—C12—H12 121.2
N1—Ni1—N10 90.74 (13) N11—C13—C12 122.8 (3)
O1—Ni1—N10 174.33 (10) N11—C13—H13 118.6
N3—Ni1—N20 177.73 (13) C12—C13—H13 118.6
N1—Ni1—N20 90.42 (12) C20—N20—N21 119.8 (3)
O1—Ni1—N20 86.57 (11) C20—N20—Ni1 121.1 (2)
N10—Ni1—N20 88.15 (11) N21—N20—Ni1 119.2 (2)
N3—Ni1—N2 91.10 (12) C23—N21—N20 119.1 (3)
N1—Ni1—N2 177.27 (12) C23—N21—Ni2 124.2 (2)
O1—Ni1—N2 89.45 (11) N20—N21—Ni2 116.7 (2)
N10—Ni1—N2 88.22 (11) N20—C20—C21 122.9 (3)
N20—Ni1—N2 87.02 (11) N20—C20—H20 118.6
N21i—Ni2—N21 180.0 C21—C20—H20 118.6
N21i—Ni2—N2 91.99 (11) C22—C21—C20 117.6 (4)
N21—Ni2—N2 88.01 (11) C22—C21—H21 121.2
N21i—Ni2—N2i 88.01 (11) C20—C21—H21 121.2
N21—Ni2—N2i 91.99 (11) C21—C22—C23 117.3 (3)
N2—Ni2—N2i 180.0 C21—C22—H22 121.3
N21i—Ni2—N11i 90.32 (10) C23—C22—H22 121.3
N21—Ni2—N11i 89.68 (10) N21—C23—C22 123.3 (3)
N2—Ni2—N11i 91.80 (11) N21—C23—H23 118.4
N2i—Ni2—N11i 88.20 (11) C22—C23—H23 118.4
N21i—Ni2—N11 89.68 (10) C30—O1—Ni1 127.1 (3)
N21—Ni2—N11 90.32 (10) C30—O1—H1O1 108.0
N2—Ni2—N11 88.20 (11) Ni1—O1—H1O1 124.6
N2i—Ni2—N11 91.80 (11) O1—C30—H30A 109.5
N11i—Ni2—N11 180.000 (1) O1—C30—H30B 109.5
C1—N1—Ni1 163.4 (4) H30A—C30—H30B 109.5
N1—C1—S1 178.9 (4) O1—C30—H30C 109.5
C2—N2—Ni2 128.4 (3) H30A—C30—H30C 109.5
C2—N2—Ni1 127.7 (3) H30B—C30—H30C 109.5
Ni2—N2—Ni1 103.51 (13) C31—O2—H1O2 109.7
N2—C2—S2 178.2 (4) O2—C31—H31A 109.5
C3—N3—Ni1 167.6 (3) O2—C31—H31B 109.5
N3—C3—S3 178.8 (4) H31A—C31—H31B 109.5
C10—N10—N11 118.8 (3) O2—C31—H31C 109.5
C10—N10—Ni1 123.4 (2) H31A—C31—H31C 109.5
N11—N10—Ni1 117.8 (2) H31B—C31—H31C 109.5
C13—N11—N10 119.8 (3) C32—O3—H1O3 115.6
C13—N11—Ni2 122.1 (2) O3—C32—H32A 109.5
N10—N11—Ni2 118.1 (2) O3—C32—H32B 109.5
N10—C10—C11 123.4 (4) H32A—C32—H32B 109.5
N10—C10—H10 118.3 O3—C32—H32C 109.5
C11—C10—H10 118.3 H32A—C32—H32C 109.5
C12—C11—C10 117.6 (3) H32B—C32—H32C 109.5
C12—C11—H11 121.2

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2ii 0.84 1.84 2.671 (4) 171
O2—H1O2···O3 0.84 1.91 2.691 (9) 155
O3—H1O3···S1 0.84 2.45 3.285 (6) 178

Symmetry code: (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2040).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026. [DOI] [PubMed]
  3. Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106. [DOI] [PubMed]
  4. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  7. Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. 50, 6920–6923. [DOI] [PubMed]
  8. Wriedt, M. & Näther, C. (2009). Z. Anorg. Allg. Chem. 635, 2459–2464.
  9. Yi, T., Ho-Chol, C., Gao, S. & Kitagawa, S. (2006). Eur. J. Inorg. Chem. 7, 1381–1387.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026864/hp2040sup1.cif

e-68-0m940-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026864/hp2040Isup2.hkl

e-68-0m940-Isup2.hkl (200.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES