Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m943. doi: 10.1107/S1600536812026815

Bis[2-(5-methyl­sulfanyl-1,3,4-oxadiazol-2-yl-κN 3)phenolato-κO 1]copper(II)

Souheila Ouilia a, Chahrazed Beghidja a, Adel Beghidja a,*, François Michaud b
PMCID: PMC3393202  PMID: 22807770

Abstract

In the title complex, [Cu(C9H7N2O2S)2], the CuII ion, located on an inversion center, adopts an N2O2 square-planar coord­ination. The 2-(5-methyl­sulfanyl-1,3,4-oxadiazol-2-yl)phenolate ligand is chelated to the central CuII ion in an N,O-bidentate manner.

Related literature  

For general background to derivatives of dithio­carbazate ligands and their metal complexes, see: Beghidja et al. (2005; 2006); Bouchameni et al. (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala et al. (2007); Liu et al. (2008); Zhang et al. (2001). For the preparation of the ligand, see: Dolman et al. (2006); Young & Wood (1955).graphic file with name e-68-0m943-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C9H7N2O2S)2]

  • M r = 478.02

  • Monoclinic, Inline graphic

  • a = 12.5695 (7) Å

  • b = 4.4216 (3) Å

  • c = 17.3861 (9) Å

  • β = 106.005 (6)°

  • V = 928.81 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 170 K

  • 0.18 × 0.12 × 0.09 mm

Data collection  

  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.926, T max = 1.000

  • 6693 measured reflections

  • 1906 independent reflections

  • 1250 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.066

  • S = 0.99

  • 1906 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026815/hp2039sup1.cif

e-68-0m943-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026815/hp2039Isup2.hkl

e-68-0m943-Isup2.hkl (91.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O2 1.896 (2)
Cu1—N1 1.9746 (19)

Acknowledgments

The authors thank the Algerian MESRS for financial support (PNR project).

supplementary crystallographic information

Comment

The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ cyclization of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).

Experimental

The ligand HL(1) (0.128 g, 0.05 mmol) was dissolved in minimum of DMF. The solution of CuCl2.2H2O (0.0085 g, 0.05 mmol) in DMF was added to the first when the ligand was dissolved completely. Green crystals of the complex 1 were isolated from the solution after two weeks.

Refinement

All H atoms were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93–0.96 Å, and Uiso (H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Linking of the layers in the structure via van der Waals interactions.

Crystal data

[Cu(C9H7N2O2S)2] F(000) = 486
Mr = 478.02 Least Squares Treatment of 25 SET4 setting angles.
Monoclinic, P21/n Dx = 1.709 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 12.5695 (7) Å Cell parameters from 2354 reflections
b = 4.4216 (3) Å θ = 3.3–31.6°
c = 17.3861 (9) Å µ = 1.44 mm1
β = 106.005 (6)° T = 170 K
V = 928.81 (9) Å3 Plates, green
Z = 2 0.18 × 0.12 × 0.09 mm

Data collection

Oxford Diffraction Xcalibur CCD diffractometer 1906 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1250 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 18.4 pixels mm-1 θmax = 26.4°, θmin = 3.4°
ω and φ scans h = −15→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −5→5
Tmin = 0.926, Tmax = 1.000 l = −21→14
6693 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0283P)2] where P = (Fo2 + 2Fc2)/3
1906 reflections (Δ/σ)max = 0.004
133 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.50000 0.00000 1.00000 0.0381 (1)
S1 0.45296 (6) 0.47186 (17) 0.68566 (4) 0.0455 (3)
O1 0.58495 (13) 0.1114 (4) 0.79047 (9) 0.0362 (6)
O2 0.62190 (14) −0.2686 (5) 1.01766 (9) 0.0506 (7)
N1 0.51554 (16) 0.0936 (5) 0.89257 (11) 0.0347 (7)
N2 0.44837 (16) 0.2890 (5) 0.83525 (11) 0.0387 (8)
C1 0.59434 (18) −0.0065 (6) 0.86434 (13) 0.0315 (7)
C2 0.68113 (19) −0.2153 (6) 0.89831 (14) 0.0326 (8)
C3 0.68883 (19) −0.3359 (6) 0.97479 (15) 0.0356 (8)
C4 0.7755 (2) −0.5413 (6) 1.00571 (15) 0.0424 (9)
C5 0.8503 (2) −0.6167 (6) 0.96422 (17) 0.0474 (10)
C6 0.8424 (2) −0.4940 (7) 0.88955 (16) 0.0455 (9)
C7 0.7584 (2) −0.2969 (6) 0.85724 (16) 0.0429 (10)
C8 0.4933 (2) 0.2903 (6) 0.77720 (14) 0.0346 (8)
C9 0.3251 (2) 0.6276 (7) 0.69352 (17) 0.0602 (11)
H4 0.78230 −0.62840 1.05550 0.0510*
H5 0.90710 −0.75200 0.98660 0.0570*
H6 0.89350 −0.54500 0.86190 0.0550*
H7 0.75220 −0.21510 0.80690 0.0510*
H9A 0.29080 0.74020 0.64590 0.0900*
H9B 0.33910 0.75940 0.73910 0.0900*
H9C 0.27680 0.46690 0.69980 0.0900*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0309 (2) 0.0596 (3) 0.0265 (2) 0.0096 (2) 0.0123 (2) 0.0020 (3)
S1 0.0469 (4) 0.0576 (5) 0.0340 (4) −0.0015 (4) 0.0146 (3) 0.0092 (4)
O1 0.0361 (10) 0.0457 (11) 0.0307 (9) −0.0003 (8) 0.0158 (8) 0.0006 (8)
O2 0.0442 (11) 0.0785 (14) 0.0346 (10) 0.0221 (10) 0.0200 (9) 0.0092 (11)
N1 0.0300 (11) 0.0482 (14) 0.0274 (11) 0.0054 (10) 0.0104 (9) 0.0020 (10)
N2 0.0340 (12) 0.0521 (15) 0.0303 (12) 0.0051 (11) 0.0093 (10) 0.0039 (11)
C1 0.0301 (12) 0.0398 (14) 0.0261 (12) −0.0068 (14) 0.0102 (10) −0.0058 (14)
C2 0.0285 (13) 0.0385 (15) 0.0316 (13) −0.0021 (11) 0.0098 (11) −0.0059 (12)
C3 0.0289 (13) 0.0443 (16) 0.0341 (14) −0.0017 (12) 0.0095 (11) −0.0084 (13)
C4 0.0397 (15) 0.0520 (19) 0.0342 (13) 0.0079 (13) 0.0078 (12) 0.0011 (14)
C5 0.0398 (16) 0.0462 (17) 0.0562 (19) 0.0112 (13) 0.0135 (14) −0.0070 (15)
C6 0.0398 (14) 0.0508 (17) 0.0535 (16) 0.0065 (15) 0.0256 (13) −0.0016 (17)
C7 0.0426 (16) 0.0489 (18) 0.0438 (16) 0.0004 (14) 0.0230 (13) −0.0031 (14)
C8 0.0320 (14) 0.0401 (16) 0.0315 (14) −0.0036 (12) 0.0086 (12) −0.0033 (12)
C9 0.060 (2) 0.069 (2) 0.0527 (19) 0.0110 (16) 0.0175 (16) 0.0157 (16)

Geometric parameters (Å, º)

Cu1—O2 1.896 (2) C2—C3 1.411 (3)
Cu1—N1 1.9746 (19) C2—C7 1.402 (4)
Cu1—O2i 1.896 (2) C3—C4 1.406 (4)
Cu1—N1i 1.9746 (19) C4—C5 1.375 (4)
S1—C8 1.729 (3) C5—C6 1.385 (4)
S1—C9 1.788 (3) C6—C7 1.365 (4)
O1—C1 1.361 (3) C4—H4 0.9300
O1—C8 1.364 (3) C5—H5 0.9300
O2—C3 1.303 (3) C6—H6 0.9300
N1—N2 1.410 (3) C7—H7 0.9300
N1—C1 1.298 (3) C9—H9A 0.9600
N2—C8 1.285 (3) C9—H9B 0.9600
C1—C2 1.427 (4) C9—H9C 0.9600
Cu1···O2ii 3.555 (2) C3···Cu1vi 3.876 (3)
Cu1···C3ii 3.876 (3) C3···N1vi 3.381 (3)
Cu1···C4ii 3.991 (3) C3···C1vi 3.554 (4)
Cu1···O2iii 3.555 (2) C3···Cu1iii 3.876 (3)
Cu1···C3iii 3.876 (3) C4···C2vi 3.543 (4)
Cu1···C4iii 3.991 (3) C4···Cu1vi 3.991 (3)
S1···H6iv 3.1400 C4···C1vi 3.517 (4)
S1···H4v 3.0600 C4···Cu1iii 3.991 (3)
O1···N2 2.215 (3) C5···C7vi 3.557 (4)
O1···C7ii 3.399 (3) C5···C2vi 3.391 (4)
O2···N2i 2.928 (3) C7···O1vi 3.399 (3)
O2···C1 2.839 (3) C7···C5ii 3.557 (4)
O2···Cu1vi 3.555 (2) C8···C1ii 3.538 (4)
O2···N1 2.735 (3) C8···C2ii 3.471 (4)
O2···Cu1iii 3.555 (2) C9···N2x 3.410 (3)
O2···N1i 2.740 (3) C3···H9Aviii 2.9300
O1···H6vii 2.8200 C4···H9Aviii 2.7400
O1···H7 2.5000 C8···H9Bvi 3.0000
O2···H9Aviii 2.6200 C9···H9Cx 2.9400
N1···O1 2.185 (3) H4···S1xi 3.0600
N1···O2 2.735 (3) H4···H9Aviii 2.3100
N1···C3 2.946 (3) H6···S1xii 3.1400
N1···C3ii 3.381 (3) H6···O1xiii 2.8200
N1···O2i 2.740 (3) H7···O1 2.5000
N2···O1 2.215 (3) H9A···O2xiv 2.6200
N2···O2i 2.928 (3) H9A···C3xiv 2.9300
N2···C9ix 3.410 (3) H9A···C4xiv 2.7400
N2···H9C 2.8300 H9A···H4xiv 2.3100
N2···H9B 2.7800 H9B···N2 2.7800
C1···C3ii 3.554 (4) H9B···C8ii 3.0000
C1···C4ii 3.517 (4) H9B···H9Cx 2.2200
C1···C8vi 3.538 (4) H9C···N2 2.8300
C2···C4ii 3.543 (4) H9C···C9ix 2.9400
C2···C5ii 3.391 (4) H9C···H9Bix 2.2200
C2···C8vi 3.471 (4)
O2—Cu1—N1 89.90 (8) C3—C4—C5 121.7 (2)
O2—Cu1—O2i 180.00 C4—C5—C6 121.0 (2)
O2—Cu1—N1i 90.11 (8) C5—C6—C7 118.9 (2)
O2i—Cu1—N1 90.11 (8) C2—C7—C6 121.4 (2)
N1—Cu1—N1i 180.00 S1—C8—O1 116.41 (17)
O2i—Cu1—N1i 89.90 (8) S1—C8—N2 130.1 (2)
C8—S1—C9 98.63 (13) O1—C8—N2 113.5 (2)
C1—O1—C8 103.37 (18) C3—C4—H4 119.00
Cu1—O2—C3 132.15 (16) C5—C4—H4 119.00
Cu1—N1—N2 126.93 (15) C4—C5—H5 120.00
Cu1—N1—C1 124.81 (17) C6—C5—H5 119.00
N2—N1—C1 108.19 (19) C5—C6—H6 121.00
N1—N2—C8 104.5 (2) C7—C6—H6 121.00
O1—C1—N1 110.5 (2) C2—C7—H7 119.00
O1—C1—C2 119.7 (2) C6—C7—H7 119.00
N1—C1—C2 129.8 (2) S1—C9—H9A 109.00
C1—C2—C3 118.7 (2) S1—C9—H9B 109.00
C1—C2—C7 120.9 (2) S1—C9—H9C 109.00
C3—C2—C7 120.4 (2) H9A—C9—H9B 109.00
O2—C3—C2 124.4 (2) H9A—C9—H9C 110.00
O2—C3—C4 118.9 (2) H9B—C9—H9C 109.00
C2—C3—C4 116.7 (2)
N1—Cu1—O2—C3 3.7 (2) Cu1—N1—C1—O1 −176.81 (15)
N1i—Cu1—O2—C3 −176.3 (2) N1—N2—C8—O1 0.2 (3)
O2—Cu1—N1—N2 178.6 (2) N1—N2—C8—S1 177.9 (2)
O2i—Cu1—N1—N2 −1.4 (2) O1—C1—C2—C7 1.2 (4)
O2—Cu1—N1—C1 −4.9 (2) N1—C1—C2—C7 179.4 (3)
O2i—Cu1—N1—C1 175.1 (2) O1—C1—C2—C3 −179.6 (2)
C9—S1—C8—O1 173.0 (2) N1—C1—C2—C3 −1.4 (4)
C9—S1—C8—N2 −4.7 (3) C3—C2—C7—C6 0.2 (4)
C8—O1—C1—N1 −0.1 (3) C1—C2—C3—C4 179.8 (2)
C1—O1—C8—N2 −0.1 (3) C1—C2—C7—C6 179.3 (3)
C8—O1—C1—C2 178.4 (2) C1—C2—C3—O2 −0.4 (4)
C1—O1—C8—S1 −178.12 (18) C7—C2—C3—O2 178.8 (2)
Cu1—O2—C3—C2 −1.8 (4) C7—C2—C3—C4 −1.0 (4)
Cu1—O2—C3—C4 177.95 (18) O2—C3—C4—C5 −178.6 (2)
C1—N1—N2—C8 −0.3 (3) C2—C3—C4—C5 1.2 (4)
Cu1—N1—N2—C8 176.71 (18) C3—C4—C5—C6 −0.5 (4)
N2—N1—C1—C2 −178.1 (3) C4—C5—C6—C7 −0.3 (4)
N2—N1—C1—O1 0.2 (3) C5—C6—C7—C2 0.5 (4)
Cu1—N1—C1—C2 4.9 (4)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, y+1, z; (iii) −x+1, −y−1, −z+2; (iv) −x+3/2, y+3/2, −z+3/2; (v) x−1/2, −y−1/2, z−1/2; (vi) x, y−1, z; (vii) −x+3/2, y+1/2, −z+3/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+1/2, y−1/2, −z+3/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) x+1/2, −y−1/2, z+1/2; (xii) −x+3/2, y−3/2, −z+3/2; (xiii) −x+3/2, y−1/2, −z+3/2; (xiv) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1 0.93 2.50 2.822 (3) 100

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2039).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Beghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590–597.
  3. Beghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141. [DOI] [PubMed]
  4. Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403–1406.
  5. Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881–3888.
  6. Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778.
  7. Dolman, S., Gosselin, F., O’Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548–9551. [DOI] [PubMed]
  8. Dowty, E. (1995). ATOMS Shape Software, Kingsport, Tennessee, USA.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Kala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427–1435.
  11. Liu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040–4046.
  12. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Young, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400–403.
  16. Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026815/hp2039sup1.cif

e-68-0m943-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026815/hp2039Isup2.hkl

e-68-0m943-Isup2.hkl (91.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES