Abstract
In the title complex, [Cu(C9H7N2O2S)2], the CuII ion, located on an inversion center, adopts an N2O2 square-planar coordination. The 2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl)phenolate ligand is chelated to the central CuII ion in an N,O-bidentate manner.
Related literature
For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja et al. (2005 ▶; 2006 ▶); Bouchameni et al. (2011 ▶); Beghidja, Bouslimani & Welter (2007 ▶); Beghidja, Rogez & Welter (2007 ▶). For similar structures, see: Kala et al. (2007 ▶); Liu et al. (2008 ▶); Zhang et al. (2001 ▶). For the preparation of the ligand, see: Dolman et al. (2006 ▶); Young & Wood (1955 ▶).
Experimental
Crystal data
[Cu(C9H7N2O2S)2]
M r = 478.02
Monoclinic,
a = 12.5695 (7) Å
b = 4.4216 (3) Å
c = 17.3861 (9) Å
β = 106.005 (6)°
V = 928.81 (9) Å3
Z = 2
Mo Kα radiation
μ = 1.44 mm−1
T = 170 K
0.18 × 0.12 × 0.09 mm
Data collection
Oxford Diffraction Xcalibur CCD diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 ▶) T min = 0.926, T max = 1.000
6693 measured reflections
1906 independent reflections
1250 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.033
wR(F 2) = 0.066
S = 0.99
1906 reflections
133 parameters
H-atom parameters constrained
Δρmax = 0.31 e Å−3
Δρmin = −0.18 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2007 ▶); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007 ▶); program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ATOMS (Dowty, 1995 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶) and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026815/hp2039sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026815/hp2039Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Cu1—O2 | 1.896 (2) |
| Cu1—N1 | 1.9746 (19) |
Acknowledgments
The authors thank the Algerian MESRS for financial support (PNR project).
supplementary crystallographic information
Comment
The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ cyclization of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).
Experimental
The ligand HL(1) (0.128 g, 0.05 mmol) was dissolved in minimum of DMF. The solution of CuCl2.2H2O (0.0085 g, 0.05 mmol) in DMF was added to the first when the ligand was dissolved completely. Green crystals of the complex 1 were isolated from the solution after two weeks.
Refinement
All H atoms were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93–0.96 Å, and Uiso (H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.
Figures
Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Linking of the layers in the structure via van der Waals interactions.
Crystal data
| [Cu(C9H7N2O2S)2] | F(000) = 486 |
| Mr = 478.02 | Least Squares Treatment of 25 SET4 setting angles. |
| Monoclinic, P21/n | Dx = 1.709 Mg m−3 |
| Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
| a = 12.5695 (7) Å | Cell parameters from 2354 reflections |
| b = 4.4216 (3) Å | θ = 3.3–31.6° |
| c = 17.3861 (9) Å | µ = 1.44 mm−1 |
| β = 106.005 (6)° | T = 170 K |
| V = 928.81 (9) Å3 | Plates, green |
| Z = 2 | 0.18 × 0.12 × 0.09 mm |
Data collection
| Oxford Diffraction Xcalibur CCD diffractometer | 1906 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1250 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.037 |
| Detector resolution: 18.4 pixels mm-1 | θmax = 26.4°, θmin = 3.4° |
| ω and φ scans | h = −15→15 |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −5→5 |
| Tmin = 0.926, Tmax = 1.000 | l = −21→14 |
| 6693 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.066 | H-atom parameters constrained |
| S = 0.99 | w = 1/[σ2(Fo2) + (0.0283P)2] where P = (Fo2 + 2Fc2)/3 |
| 1906 reflections | (Δ/σ)max = 0.004 |
| 133 parameters | Δρmax = 0.31 e Å−3 |
| 0 restraints | Δρmin = −0.18 e Å−3 |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.50000 | 0.00000 | 1.00000 | 0.0381 (1) | |
| S1 | 0.45296 (6) | 0.47186 (17) | 0.68566 (4) | 0.0455 (3) | |
| O1 | 0.58495 (13) | 0.1114 (4) | 0.79047 (9) | 0.0362 (6) | |
| O2 | 0.62190 (14) | −0.2686 (5) | 1.01766 (9) | 0.0506 (7) | |
| N1 | 0.51554 (16) | 0.0936 (5) | 0.89257 (11) | 0.0347 (7) | |
| N2 | 0.44837 (16) | 0.2890 (5) | 0.83525 (11) | 0.0387 (8) | |
| C1 | 0.59434 (18) | −0.0065 (6) | 0.86434 (13) | 0.0315 (7) | |
| C2 | 0.68113 (19) | −0.2153 (6) | 0.89831 (14) | 0.0326 (8) | |
| C3 | 0.68883 (19) | −0.3359 (6) | 0.97479 (15) | 0.0356 (8) | |
| C4 | 0.7755 (2) | −0.5413 (6) | 1.00571 (15) | 0.0424 (9) | |
| C5 | 0.8503 (2) | −0.6167 (6) | 0.96422 (17) | 0.0474 (10) | |
| C6 | 0.8424 (2) | −0.4940 (7) | 0.88955 (16) | 0.0455 (9) | |
| C7 | 0.7584 (2) | −0.2969 (6) | 0.85724 (16) | 0.0429 (10) | |
| C8 | 0.4933 (2) | 0.2903 (6) | 0.77720 (14) | 0.0346 (8) | |
| C9 | 0.3251 (2) | 0.6276 (7) | 0.69352 (17) | 0.0602 (11) | |
| H4 | 0.78230 | −0.62840 | 1.05550 | 0.0510* | |
| H5 | 0.90710 | −0.75200 | 0.98660 | 0.0570* | |
| H6 | 0.89350 | −0.54500 | 0.86190 | 0.0550* | |
| H7 | 0.75220 | −0.21510 | 0.80690 | 0.0510* | |
| H9A | 0.29080 | 0.74020 | 0.64590 | 0.0900* | |
| H9B | 0.33910 | 0.75940 | 0.73910 | 0.0900* | |
| H9C | 0.27680 | 0.46690 | 0.69980 | 0.0900* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0309 (2) | 0.0596 (3) | 0.0265 (2) | 0.0096 (2) | 0.0123 (2) | 0.0020 (3) |
| S1 | 0.0469 (4) | 0.0576 (5) | 0.0340 (4) | −0.0015 (4) | 0.0146 (3) | 0.0092 (4) |
| O1 | 0.0361 (10) | 0.0457 (11) | 0.0307 (9) | −0.0003 (8) | 0.0158 (8) | 0.0006 (8) |
| O2 | 0.0442 (11) | 0.0785 (14) | 0.0346 (10) | 0.0221 (10) | 0.0200 (9) | 0.0092 (11) |
| N1 | 0.0300 (11) | 0.0482 (14) | 0.0274 (11) | 0.0054 (10) | 0.0104 (9) | 0.0020 (10) |
| N2 | 0.0340 (12) | 0.0521 (15) | 0.0303 (12) | 0.0051 (11) | 0.0093 (10) | 0.0039 (11) |
| C1 | 0.0301 (12) | 0.0398 (14) | 0.0261 (12) | −0.0068 (14) | 0.0102 (10) | −0.0058 (14) |
| C2 | 0.0285 (13) | 0.0385 (15) | 0.0316 (13) | −0.0021 (11) | 0.0098 (11) | −0.0059 (12) |
| C3 | 0.0289 (13) | 0.0443 (16) | 0.0341 (14) | −0.0017 (12) | 0.0095 (11) | −0.0084 (13) |
| C4 | 0.0397 (15) | 0.0520 (19) | 0.0342 (13) | 0.0079 (13) | 0.0078 (12) | 0.0011 (14) |
| C5 | 0.0398 (16) | 0.0462 (17) | 0.0562 (19) | 0.0112 (13) | 0.0135 (14) | −0.0070 (15) |
| C6 | 0.0398 (14) | 0.0508 (17) | 0.0535 (16) | 0.0065 (15) | 0.0256 (13) | −0.0016 (17) |
| C7 | 0.0426 (16) | 0.0489 (18) | 0.0438 (16) | 0.0004 (14) | 0.0230 (13) | −0.0031 (14) |
| C8 | 0.0320 (14) | 0.0401 (16) | 0.0315 (14) | −0.0036 (12) | 0.0086 (12) | −0.0033 (12) |
| C9 | 0.060 (2) | 0.069 (2) | 0.0527 (19) | 0.0110 (16) | 0.0175 (16) | 0.0157 (16) |
Geometric parameters (Å, º)
| Cu1—O2 | 1.896 (2) | C2—C3 | 1.411 (3) |
| Cu1—N1 | 1.9746 (19) | C2—C7 | 1.402 (4) |
| Cu1—O2i | 1.896 (2) | C3—C4 | 1.406 (4) |
| Cu1—N1i | 1.9746 (19) | C4—C5 | 1.375 (4) |
| S1—C8 | 1.729 (3) | C5—C6 | 1.385 (4) |
| S1—C9 | 1.788 (3) | C6—C7 | 1.365 (4) |
| O1—C1 | 1.361 (3) | C4—H4 | 0.9300 |
| O1—C8 | 1.364 (3) | C5—H5 | 0.9300 |
| O2—C3 | 1.303 (3) | C6—H6 | 0.9300 |
| N1—N2 | 1.410 (3) | C7—H7 | 0.9300 |
| N1—C1 | 1.298 (3) | C9—H9A | 0.9600 |
| N2—C8 | 1.285 (3) | C9—H9B | 0.9600 |
| C1—C2 | 1.427 (4) | C9—H9C | 0.9600 |
| Cu1···O2ii | 3.555 (2) | C3···Cu1vi | 3.876 (3) |
| Cu1···C3ii | 3.876 (3) | C3···N1vi | 3.381 (3) |
| Cu1···C4ii | 3.991 (3) | C3···C1vi | 3.554 (4) |
| Cu1···O2iii | 3.555 (2) | C3···Cu1iii | 3.876 (3) |
| Cu1···C3iii | 3.876 (3) | C4···C2vi | 3.543 (4) |
| Cu1···C4iii | 3.991 (3) | C4···Cu1vi | 3.991 (3) |
| S1···H6iv | 3.1400 | C4···C1vi | 3.517 (4) |
| S1···H4v | 3.0600 | C4···Cu1iii | 3.991 (3) |
| O1···N2 | 2.215 (3) | C5···C7vi | 3.557 (4) |
| O1···C7ii | 3.399 (3) | C5···C2vi | 3.391 (4) |
| O2···N2i | 2.928 (3) | C7···O1vi | 3.399 (3) |
| O2···C1 | 2.839 (3) | C7···C5ii | 3.557 (4) |
| O2···Cu1vi | 3.555 (2) | C8···C1ii | 3.538 (4) |
| O2···N1 | 2.735 (3) | C8···C2ii | 3.471 (4) |
| O2···Cu1iii | 3.555 (2) | C9···N2x | 3.410 (3) |
| O2···N1i | 2.740 (3) | C3···H9Aviii | 2.9300 |
| O1···H6vii | 2.8200 | C4···H9Aviii | 2.7400 |
| O1···H7 | 2.5000 | C8···H9Bvi | 3.0000 |
| O2···H9Aviii | 2.6200 | C9···H9Cx | 2.9400 |
| N1···O1 | 2.185 (3) | H4···S1xi | 3.0600 |
| N1···O2 | 2.735 (3) | H4···H9Aviii | 2.3100 |
| N1···C3 | 2.946 (3) | H6···S1xii | 3.1400 |
| N1···C3ii | 3.381 (3) | H6···O1xiii | 2.8200 |
| N1···O2i | 2.740 (3) | H7···O1 | 2.5000 |
| N2···O1 | 2.215 (3) | H9A···O2xiv | 2.6200 |
| N2···O2i | 2.928 (3) | H9A···C3xiv | 2.9300 |
| N2···C9ix | 3.410 (3) | H9A···C4xiv | 2.7400 |
| N2···H9C | 2.8300 | H9A···H4xiv | 2.3100 |
| N2···H9B | 2.7800 | H9B···N2 | 2.7800 |
| C1···C3ii | 3.554 (4) | H9B···C8ii | 3.0000 |
| C1···C4ii | 3.517 (4) | H9B···H9Cx | 2.2200 |
| C1···C8vi | 3.538 (4) | H9C···N2 | 2.8300 |
| C2···C4ii | 3.543 (4) | H9C···C9ix | 2.9400 |
| C2···C5ii | 3.391 (4) | H9C···H9Bix | 2.2200 |
| C2···C8vi | 3.471 (4) | ||
| O2—Cu1—N1 | 89.90 (8) | C3—C4—C5 | 121.7 (2) |
| O2—Cu1—O2i | 180.00 | C4—C5—C6 | 121.0 (2) |
| O2—Cu1—N1i | 90.11 (8) | C5—C6—C7 | 118.9 (2) |
| O2i—Cu1—N1 | 90.11 (8) | C2—C7—C6 | 121.4 (2) |
| N1—Cu1—N1i | 180.00 | S1—C8—O1 | 116.41 (17) |
| O2i—Cu1—N1i | 89.90 (8) | S1—C8—N2 | 130.1 (2) |
| C8—S1—C9 | 98.63 (13) | O1—C8—N2 | 113.5 (2) |
| C1—O1—C8 | 103.37 (18) | C3—C4—H4 | 119.00 |
| Cu1—O2—C3 | 132.15 (16) | C5—C4—H4 | 119.00 |
| Cu1—N1—N2 | 126.93 (15) | C4—C5—H5 | 120.00 |
| Cu1—N1—C1 | 124.81 (17) | C6—C5—H5 | 119.00 |
| N2—N1—C1 | 108.19 (19) | C5—C6—H6 | 121.00 |
| N1—N2—C8 | 104.5 (2) | C7—C6—H6 | 121.00 |
| O1—C1—N1 | 110.5 (2) | C2—C7—H7 | 119.00 |
| O1—C1—C2 | 119.7 (2) | C6—C7—H7 | 119.00 |
| N1—C1—C2 | 129.8 (2) | S1—C9—H9A | 109.00 |
| C1—C2—C3 | 118.7 (2) | S1—C9—H9B | 109.00 |
| C1—C2—C7 | 120.9 (2) | S1—C9—H9C | 109.00 |
| C3—C2—C7 | 120.4 (2) | H9A—C9—H9B | 109.00 |
| O2—C3—C2 | 124.4 (2) | H9A—C9—H9C | 110.00 |
| O2—C3—C4 | 118.9 (2) | H9B—C9—H9C | 109.00 |
| C2—C3—C4 | 116.7 (2) | ||
| N1—Cu1—O2—C3 | 3.7 (2) | Cu1—N1—C1—O1 | −176.81 (15) |
| N1i—Cu1—O2—C3 | −176.3 (2) | N1—N2—C8—O1 | 0.2 (3) |
| O2—Cu1—N1—N2 | 178.6 (2) | N1—N2—C8—S1 | 177.9 (2) |
| O2i—Cu1—N1—N2 | −1.4 (2) | O1—C1—C2—C7 | 1.2 (4) |
| O2—Cu1—N1—C1 | −4.9 (2) | N1—C1—C2—C7 | 179.4 (3) |
| O2i—Cu1—N1—C1 | 175.1 (2) | O1—C1—C2—C3 | −179.6 (2) |
| C9—S1—C8—O1 | 173.0 (2) | N1—C1—C2—C3 | −1.4 (4) |
| C9—S1—C8—N2 | −4.7 (3) | C3—C2—C7—C6 | 0.2 (4) |
| C8—O1—C1—N1 | −0.1 (3) | C1—C2—C3—C4 | 179.8 (2) |
| C1—O1—C8—N2 | −0.1 (3) | C1—C2—C7—C6 | 179.3 (3) |
| C8—O1—C1—C2 | 178.4 (2) | C1—C2—C3—O2 | −0.4 (4) |
| C1—O1—C8—S1 | −178.12 (18) | C7—C2—C3—O2 | 178.8 (2) |
| Cu1—O2—C3—C2 | −1.8 (4) | C7—C2—C3—C4 | −1.0 (4) |
| Cu1—O2—C3—C4 | 177.95 (18) | O2—C3—C4—C5 | −178.6 (2) |
| C1—N1—N2—C8 | −0.3 (3) | C2—C3—C4—C5 | 1.2 (4) |
| Cu1—N1—N2—C8 | 176.71 (18) | C3—C4—C5—C6 | −0.5 (4) |
| N2—N1—C1—C2 | −178.1 (3) | C4—C5—C6—C7 | −0.3 (4) |
| N2—N1—C1—O1 | 0.2 (3) | C5—C6—C7—C2 | 0.5 (4) |
| Cu1—N1—C1—C2 | 4.9 (4) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, y+1, z; (iii) −x+1, −y−1, −z+2; (iv) −x+3/2, y+3/2, −z+3/2; (v) x−1/2, −y−1/2, z−1/2; (vi) x, y−1, z; (vii) −x+3/2, y+1/2, −z+3/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+1/2, y−1/2, −z+3/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) x+1/2, −y−1/2, z+1/2; (xii) −x+3/2, y−3/2, −z+3/2; (xiii) −x+3/2, y−1/2, −z+3/2; (xiv) x−1/2, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H7···O1 | 0.93 | 2.50 | 2.822 (3) | 100 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2039).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Beghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590–597.
- Beghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141. [DOI] [PubMed]
- Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403–1406.
- Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881–3888.
- Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778.
- Dolman, S., Gosselin, F., O’Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548–9551. [DOI] [PubMed]
- Dowty, E. (1995). ATOMS Shape Software, Kingsport, Tennessee, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Kala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427–1435.
- Liu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040–4046.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Young, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400–403.
- Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026815/hp2039sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026815/hp2039Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


