Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m944–m945. doi: 10.1107/S1600536812026566

[2-(1-{2-[Aza­nid­yl(ethyl­sulfan­yl)methyl­idene-κN]hydrazin-1-yl­idene-κN 1}eth­yl)phenolato-κO](dimethyl sulfoxide-κO)dioxidomolybdenum(VI)

Reza Takjoo a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3393203  PMID: 22807771

Abstract

The MoVI atom in the title complex, [Mo(C11H13N3OS)O2(C2H6OS)], is N,N′,O-coordinated by the dianionic tridentate ligand, two mutually cis oxide O atoms and a dimethyl sulfoxide O atom, defining a distorted octa­hedral N2O4 donor set. The most prominent feature of the crystal packing is the formation of inversion dimers via pairs of N—H⋯O hydrogen bonds and eight-membered {⋯HNMoO}2 loops. The Schiff base ligand is disordered over two orientations of equal occupancy.

Related literature  

For the coordination chemistry and medicinal applications of thio­semicarbazone derivatives, see: Ahmadi et al. (2012); Dilworth & Hueting (2012). For related structures, see: Ceylan et al. (2009); Takjoo et al. (2012).graphic file with name e-68-0m944-scheme1.jpg

Experimental  

Crystal data  

  • [Mo(C11H13N3OS)O2(C2H6OS)]

  • M r = 441.37

  • Triclinic, Inline graphic

  • a = 8.0411 (3) Å

  • b = 9.7243 (3) Å

  • c = 12.0849 (4) Å

  • α = 73.387 (3)°

  • β = 84.465 (3)°

  • γ = 86.077 (3)°

  • V = 900.47 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.691, T max = 1.000

  • 13626 measured reflections

  • 4149 independent reflections

  • 3811 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.072

  • S = 1.03

  • 4149 reflections

  • 234 parameters

  • 100 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026566/hb6848sup1.cif

e-68-0m944-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026566/hb6848Isup2.hkl

e-68-0m944-Isup2.hkl (203.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mo—O1 2.011 (7)
Mo—O2 2.2747 (16)
Mo—O3 1.7133 (16)
Mo—O4 1.7021 (18)
Mo—N1 2.193 (6)
Mo—N3 1.933 (15)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O3i 0.88 2.23 3.090 (15) 166
N3′—H3n′⋯O3i 0.88 1.94 2.816 (16) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Schiff bases derived from S-alkyl esters of thiosemicarbazone are capable of complexing both transition and main group metals (Ahmadi et al., 2012) and these may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described, which was determined as a part of on-going studies (Takjoo et al., 2012).

The MoVI atom in (I), Fig. 1, exists within a distorted octahedral N2O4 donor set defined by the N,N,O atoms of the dinegative tridentate ligand, two oxo-O atoms and a DMSO-O atom, Table 1; the oxo-O atoms are cis. The dihedral angle between the five- and six-membered chelate rings is 11.34 (19) Å indicating some bending in the Schiff base ligand (the comparable angle in the second conformation of the disordered ligand is 7.81 (17)°). The molecular structure resembles that of the complex where the Mo atom is coordinated by methanol rather than DMSO (Ceylan et al., 2009).

While whole molecule disorder of the Schiff base ligands precludes a detailed analysis of the crystal packing, a common feature of both orientations is the formation of N—H···O hydrogen bonds between centrosymmetrically related molecules to form a dimeric aggregate via an eight-membered {···HNMoO}2 synthon, Fig. 2 and Table 2.

Experimental

An ethanolic solution (3 ml) of molybdenyl acetylacetonate (0.33 g, 1 mmol) was added drop-wise to an ethanolic solution (3 ml) of 1-(2-hydroxyphenyl)ethanone S-ethylisothiosemicarbazone hydrobromide (0.32 g, 1 mmol) under stirring. The clear solution was stirred for 1 h and yellow precipitate was appeared. The product was then filtered, washed with cold ethanol and dried in air. The resulting compound was dissolved in DMSO (2 ml) and by slow evaporation of the solvent orange prisms appeared after one week. M.pt. 427 K. Yield: 33%.

Refinement

Nitrogen- and carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(N,C)] and were included in the refinement in the riding model approximation.

The dianion is disordered over two positions in a 1:1 ratio. The benzene rings were refined as rigid hexagons of 1.39 Å sides and other pairs of bond distances were restrained to within 0.01 Å of each other. The anisotropic displacement parameters (restrained to be nearly isotropic) of the primed atoms were set to those of the unprimed ones.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the centrosymmetric aggregate in (I) mediated by N—H···O hydrogen bonds, shown as blue dashed lines. A similar arragement is found for the second conformation of the Schiff base ligand.

Crystal data

[Mo(C11H13N3OS)O2(C2H6OS)] Z = 2
Mr = 441.37 F(000) = 448
Triclinic, P1 Dx = 1.628 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0411 (3) Å Cell parameters from 8498 reflections
b = 9.7243 (3) Å θ = 2.4–27.5°
c = 12.0849 (4) Å µ = 0.98 mm1
α = 73.387 (3)° T = 100 K
β = 84.465 (3)° Prism, orange
γ = 86.077 (3)° 0.35 × 0.15 × 0.05 mm
V = 900.47 (5) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4149 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3811 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→12
Tmin = 0.691, Tmax = 1.000 l = −15→15
13626 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.0887P] where P = (Fo2 + 2Fc2)/3
4149 reflections (Δ/σ)max = 0.001
234 parameters Δρmax = 0.73 e Å3
100 restraints Δρmin = −0.87 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mo 0.39828 (2) 0.62362 (2) 0.284368 (16) 0.01779 (7)
S2 −0.02453 (7) 0.59823 (6) 0.30257 (5) 0.02079 (13)
O2 0.13555 (19) 0.56941 (17) 0.36645 (13) 0.0208 (3)
O3 0.4236 (2) 0.67549 (16) 0.40557 (15) 0.0217 (3)
O4 0.5828 (2) 0.6597 (2) 0.20227 (15) 0.0370 (5)
C12 −0.1234 (3) 0.4305 (3) 0.3508 (2) 0.0268 (5)
H12A −0.0630 0.3620 0.3141 0.040*
H12B −0.2393 0.4441 0.3296 0.040*
H12C −0.1223 0.3934 0.4351 0.040*
C13 −0.1570 (3) 0.6982 (2) 0.3810 (2) 0.0221 (5)
H13A −0.1176 0.7959 0.3631 0.033*
H13B −0.1547 0.6515 0.4643 0.033*
H13C −0.2717 0.7022 0.3588 0.033*
S1 0.4023 (2) 0.14457 (15) 0.38075 (13) 0.0307 (3) 0.50
O1 0.2528 (12) 0.7850 (6) 0.1938 (4) 0.0162 (9) 0.50
N1 0.3150 (11) 0.5172 (5) 0.1633 (5) 0.0149 (10) 0.50
N2 0.3133 (9) 0.3667 (6) 0.2053 (4) 0.0203 (9) 0.50
N3 0.439 (3) 0.4201 (15) 0.3527 (10) 0.0137 (16) 0.50
H3n 0.4952 0.3893 0.4149 0.016* 0.50
C1 0.2566 (5) 0.8284 (3) 0.07631 (19) 0.0176 (9) 0.50
C2 0.2480 (5) 0.9757 (3) 0.0241 (3) 0.0275 (8) 0.50
H2 0.2412 1.0405 0.0703 0.033* 0.50
C3 0.2494 (5) 1.0281 (3) −0.0957 (3) 0.0329 (9) 0.50
H3 0.2435 1.1287 −0.1314 0.040* 0.50
C4 0.2593 (5) 0.9332 (4) −0.16331 (19) 0.0335 (9) 0.50
H4 0.2602 0.9691 −0.2452 0.040* 0.50
C5 0.2679 (5) 0.7860 (3) −0.1111 (3) 0.0278 (8) 0.50
H5 0.2747 0.7211 −0.1573 0.033* 0.50
C6 0.2666 (4) 0.7335 (2) 0.0087 (3) 0.0183 (8) 0.50
C7 0.2706 (7) 0.5771 (6) 0.0576 (4) 0.0188 (9) 0.50
C8 0.2263 (7) 0.4788 (6) −0.0121 (4) 0.0277 (8) 0.50
H8A 0.1657 0.3976 0.0391 0.042* 0.50
H8B 0.3291 0.4431 −0.0472 0.042* 0.50
H8C 0.1557 0.5326 −0.0732 0.042* 0.50
C9 0.3817 (12) 0.3257 (6) 0.3040 (5) 0.0185 (11) 0.50
C10 0.3280 (7) 0.0531 (6) 0.2844 (5) 0.0306 (9) 0.50
H10A 0.3694 0.1019 0.2038 0.037* 0.50
H10B 0.3759 −0.0467 0.3039 0.037* 0.50
C11 0.1370 (8) 0.0490 (7) 0.2911 (6) 0.0422 (12) 0.50
H11A 0.1011 0.0621 0.2134 0.063* 0.50
H11B 0.0866 0.1263 0.3222 0.063* 0.50
H11C 0.1013 −0.0439 0.3419 0.063* 0.50
S1' 0.3906 (2) 0.12666 (15) 0.43708 (13) 0.0307 (3) 0.50
O1' 0.2699 (12) 0.7538 (6) 0.1728 (4) 0.0162 (9) 0.50
N1' 0.3129 (11) 0.4692 (6) 0.1856 (5) 0.0149 (10) 0.50
N2' 0.3038 (9) 0.3236 (6) 0.2459 (4) 0.0203 (9) 0.50
N3' 0.434 (3) 0.4047 (15) 0.3800 (10) 0.0137 (16) 0.50
H3n' 0.4895 0.3818 0.4426 0.016* 0.50
C1' 0.2776 (5) 0.7739 (3) 0.05697 (19) 0.0176 (9) 0.50
C2' 0.2822 (5) 0.9143 (3) −0.0140 (3) 0.0275 (8) 0.50
H2' 0.2816 0.9919 0.0193 0.033* 0.50
C3' 0.2878 (5) 0.9413 (3) −0.1336 (3) 0.0329 (9) 0.50
H3' 0.2910 1.0372 −0.1821 0.040* 0.50
C4' 0.2888 (5) 0.8278 (4) −0.18223 (19) 0.0335 (9) 0.50
H4' 0.2926 0.8462 −0.2640 0.040* 0.50
C5' 0.2841 (5) 0.6874 (3) −0.1113 (3) 0.0278 (8) 0.50
H5' 0.2847 0.6099 −0.1445 0.033* 0.50
C6' 0.2785 (5) 0.6605 (3) 0.0083 (2) 0.0183 (8) 0.50
C7' 0.2681 (7) 0.5090 (6) 0.0789 (5) 0.0188 (9) 0.50
C8' 0.2100 (7) 0.3937 (6) 0.0307 (4) 0.0277 (8) 0.50
H8'A 0.1395 0.3280 0.0906 0.042* 0.50
H8'B 0.3076 0.3399 0.0065 0.042* 0.50
H8'C 0.1456 0.4388 −0.0362 0.042* 0.50
C9' 0.3720 (12) 0.3009 (6) 0.3435 (5) 0.0185 (11) 0.50
C10' 0.3169 (7) 0.0189 (5) 0.3535 (5) 0.0306 (9) 0.50
H10C 0.3611 0.0564 0.2717 0.037* 0.50
H10D 0.3621 −0.0809 0.3826 0.037* 0.50
C11' 0.1275 (8) 0.0176 (7) 0.3585 (6) 0.0422 (12) 0.50
H11D 0.0958 −0.0464 0.3151 0.063* 0.50
H11E 0.0821 0.1151 0.3241 0.063* 0.50
H11F 0.0823 −0.0167 0.4394 0.063* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo 0.01666 (11) 0.01953 (11) 0.01794 (11) −0.00370 (7) −0.00961 (7) −0.00315 (8)
S2 0.0173 (3) 0.0254 (3) 0.0192 (3) −0.0038 (2) −0.0098 (2) −0.0022 (2)
O2 0.0160 (8) 0.0250 (8) 0.0199 (8) −0.0045 (6) −0.0099 (6) −0.0005 (7)
O3 0.0200 (8) 0.0159 (8) 0.0345 (9) 0.0010 (6) −0.0119 (7) −0.0130 (7)
O4 0.0225 (9) 0.0648 (14) 0.0226 (9) −0.0156 (9) −0.0076 (7) −0.0053 (9)
C12 0.0229 (12) 0.0233 (12) 0.0397 (14) −0.0036 (10) −0.0110 (10) −0.0141 (11)
C13 0.0203 (11) 0.0164 (11) 0.0312 (12) −0.0030 (9) −0.0110 (9) −0.0056 (9)
S1 0.0580 (6) 0.0097 (4) 0.0242 (6) 0.0007 (4) −0.0099 (8) −0.0029 (6)
O1 0.0220 (19) 0.012 (2) 0.0160 (17) 0.0021 (19) −0.0077 (17) −0.0041 (12)
N1 0.0204 (11) 0.008 (3) 0.015 (2) −0.006 (3) −0.0055 (18) 0.000 (2)
N2 0.0332 (15) 0.012 (3) 0.017 (3) −0.005 (2) −0.010 (2) −0.0030 (19)
N3 0.0215 (15) 0.012 (2) 0.008 (5) 0.000 (2) −0.009 (5) −0.002 (3)
C1 0.0167 (15) 0.021 (2) 0.0157 (15) −0.0021 (17) −0.0070 (12) −0.0037 (15)
C2 0.031 (2) 0.021 (2) 0.028 (2) −0.0037 (16) −0.0094 (16) −0.0009 (13)
C3 0.036 (2) 0.028 (2) 0.028 (2) −0.0096 (17) −0.0079 (16) 0.0077 (15)
C4 0.029 (2) 0.045 (2) 0.0224 (18) −0.0022 (18) −0.0092 (15) −0.0005 (18)
C5 0.0245 (17) 0.039 (2) 0.0215 (15) −0.0002 (18) −0.0089 (13) −0.0087 (18)
C6 0.0172 (14) 0.017 (2) 0.0203 (14) −0.0016 (19) −0.0079 (11) −0.003 (2)
C7 0.0164 (13) 0.021 (3) 0.025 (2) −0.003 (2) −0.0070 (14) −0.014 (2)
C8 0.037 (2) 0.031 (2) 0.0202 (19) −0.0053 (19) −0.0133 (16) −0.0112 (15)
C9 0.0272 (17) 0.011 (2) 0.018 (4) −0.0034 (18) −0.002 (3) −0.004 (2)
C10 0.046 (2) 0.0160 (18) 0.034 (2) −0.0063 (15) 0.000 (2) −0.0140 (19)
C11 0.048 (2) 0.034 (3) 0.052 (3) −0.0188 (19) 0.012 (3) −0.026 (3)
S1' 0.0580 (6) 0.0097 (4) 0.0242 (6) 0.0007 (4) −0.0099 (8) −0.0029 (6)
O1' 0.0220 (19) 0.012 (2) 0.0160 (17) 0.0021 (19) −0.0077 (17) −0.0041 (12)
N1' 0.0204 (11) 0.008 (3) 0.015 (2) −0.006 (3) −0.0055 (18) 0.000 (2)
N2' 0.0332 (15) 0.012 (3) 0.017 (3) −0.005 (2) −0.010 (2) −0.0030 (19)
N3' 0.0215 (15) 0.012 (2) 0.008 (5) 0.000 (2) −0.009 (5) −0.002 (3)
C1' 0.0167 (15) 0.021 (2) 0.0157 (15) −0.0021 (17) −0.0070 (12) −0.0037 (15)
C2' 0.031 (2) 0.021 (2) 0.028 (2) −0.0037 (16) −0.0094 (16) −0.0009 (13)
C3' 0.036 (2) 0.028 (2) 0.028 (2) −0.0096 (17) −0.0079 (16) 0.0077 (15)
C4' 0.029 (2) 0.045 (2) 0.0224 (18) −0.0022 (18) −0.0092 (15) −0.0005 (18)
C5' 0.0245 (17) 0.039 (2) 0.0215 (15) −0.0002 (18) −0.0089 (13) −0.0087 (18)
C6' 0.0172 (14) 0.017 (2) 0.0203 (14) −0.0016 (19) −0.0079 (11) −0.003 (2)
C7' 0.0164 (13) 0.021 (3) 0.025 (2) −0.003 (2) −0.0070 (14) −0.014 (2)
C8' 0.037 (2) 0.031 (2) 0.0202 (19) −0.0053 (19) −0.0133 (16) −0.0112 (15)
C9' 0.0272 (17) 0.011 (2) 0.018 (4) −0.0034 (18) −0.002 (3) −0.004 (2)
C10' 0.046 (2) 0.0160 (18) 0.034 (2) −0.0063 (15) 0.000 (2) −0.0140 (19)
C11' 0.048 (2) 0.034 (3) 0.052 (3) −0.0188 (19) 0.012 (3) −0.026 (3)

Geometric parameters (Å, º)

Mo—O1 2.011 (7) C8—H8A 0.9800
Mo—O2 2.2747 (16) C8—H8B 0.9800
Mo—O3 1.7133 (16) C8—H8C 0.9800
Mo—O4 1.7021 (18) C10—C11 1.533 (7)
Mo—O1' 1.897 (7) C10—H10A 0.9900
Mo—N1 2.193 (6) C10—H10B 0.9900
Mo—N3 1.933 (15) C11—H11A 0.9800
Mo—N3' 2.127 (15) C11—H11B 0.9800
Mo—N1' 2.340 (6) C11—H11C 0.9800
S2—O2 1.5330 (15) S1'—C9' 1.753 (5)
S2—C13 1.780 (2) S1'—C10' 1.810 (5)
S2—C12 1.782 (2) O1'—C1' 1.353 (5)
C12—H12A 0.9800 N1'—C7' 1.315 (6)
C12—H12B 0.9800 N1'—N2' 1.398 (5)
C12—H12C 0.9800 N2'—C9' 1.304 (6)
C13—H13A 0.9800 N3'—C9' 1.353 (6)
C13—H13B 0.9800 N3'—H3n' 0.8800
C13—H13C 0.9800 C1'—C2' 1.3900
S1—C9 1.746 (6) C1'—C6' 1.3900
S1—C10 1.818 (5) C2'—C3' 1.3900
O1—C1 1.359 (5) C2'—H2' 0.9500
N1—C7 1.316 (6) C3'—C4' 1.3900
N1—N2 1.406 (5) C3'—H3' 0.9500
N2—C9 1.307 (6) C4'—C5' 1.3900
N3—C9 1.351 (6) C4'—H4' 0.9500
N3—H3n 0.8800 C5'—C6' 1.3900
C1—C2 1.3900 C5'—H5' 0.9500
C1—C6 1.3900 C6'—C7' 1.479 (5)
C2—C3 1.3900 C7'—C8' 1.521 (6)
C2—H2 0.9500 C8'—H8'A 0.9800
C3—C4 1.3900 C8'—H8'B 0.9800
C3—H3 0.9500 C8'—H8'C 0.9800
C4—C5 1.3900 C10'—C11' 1.519 (7)
C4—H4 0.9500 C10'—H10C 0.9900
C5—C6 1.3900 C10'—H10D 0.9900
C5—H5 0.9500 C11'—H11D 0.9800
C6—C7 1.465 (6) C11'—H11E 0.9800
C7—C8 1.522 (6) C11'—H11F 0.9800
O4—Mo—O3 104.39 (8) C6—C5—H5 120.0
O4—Mo—O1' 94.2 (3) C4—C5—H5 120.0
O3—Mo—O1' 115.50 (14) C5—C6—C1 120.0
O4—Mo—N3 98.5 (7) C5—C6—C7 116.8 (3)
O3—Mo—N3 96.7 (3) C1—C6—C7 123.2 (3)
O1'—Mo—N3 141.2 (5) N1—C7—C6 120.7 (4)
O4—Mo—O1 99.5 (3) N1—C7—C8 117.9 (5)
O3—Mo—O1 102.65 (14) C6—C7—C8 121.4 (4)
O1'—Mo—O1 12.9 (2) N2—C9—N3 122.3 (8)
N3—Mo—O1 149.3 (6) N2—C9—S1 121.5 (5)
O4—Mo—N3' 103.0 (6) N3—C9—S1 116.2 (8)
O3—Mo—N3' 90.1 (3) C11—C10—S1 113.6 (4)
O1'—Mo—N3' 144.7 (5) C11—C10—H10A 108.9
N3—Mo—N3' 7.2 (8) S1—C10—H10A 108.9
O1—Mo—N3' 150.4 (6) C11—C10—H10B 108.9
O4—Mo—N1 90.4 (2) S1—C10—H10B 108.9
O3—Mo—N1 163.71 (19) H10A—C10—H10B 107.7
O1'—Mo—N1 69.3 (2) C10—C11—H11A 109.5
N3—Mo—N1 74.0 (3) C10—C11—H11B 109.5
O1—Mo—N1 81.2 (2) H11A—C11—H11B 109.5
N3'—Mo—N1 79.8 (3) C10—C11—H11C 109.5
O4—Mo—O2 170.16 (7) H11A—C11—H11C 109.5
O3—Mo—O2 85.28 (7) H11B—C11—H11C 109.5
O1'—Mo—O2 79.7 (3) C9'—S1'—C10' 102.2 (3)
N3—Mo—O2 82.0 (7) C1'—O1'—Mo 128.9 (4)
O1—Mo—O2 76.2 (3) C7'—N1'—N2' 117.3 (5)
N3'—Mo—O2 78.5 (6) C7'—N1'—Mo 125.2 (4)
N1—Mo—O2 80.3 (2) N2'—N1'—Mo 117.5 (4)
O4—Mo—N1' 94.7 (2) C9'—N2'—N1' 108.8 (5)
O3—Mo—N1' 154.27 (16) C9'—N3'—Mo 119.4 (9)
O1'—Mo—N1' 79.4 (2) C9'—N3'—H3n' 120.3
N3—Mo—N1' 63.1 (3) Mo—N3'—H3n' 120.3
O1—Mo—N1' 90.7 (2) O1'—C1'—C2' 117.6 (3)
N3'—Mo—N1' 68.7 (3) O1'—C1'—C6' 122.4 (3)
N1—Mo—N1' 11.27 (17) C2'—C1'—C6' 120.0
O2—Mo—N1' 76.6 (2) C1'—C2'—C3' 120.0
O2—S2—C13 103.33 (10) C1'—C2'—H2' 120.0
O2—S2—C12 103.52 (10) C3'—C2'—H2' 120.0
C13—S2—C12 99.67 (12) C4'—C3'—C2' 120.0
S2—O2—Mo 125.84 (9) C4'—C3'—H3' 120.0
S2—C12—H12A 109.5 C2'—C3'—H3' 120.0
S2—C12—H12B 109.5 C3'—C4'—C5' 120.0
H12A—C12—H12B 109.5 C3'—C4'—H4' 120.0
S2—C12—H12C 109.5 C5'—C4'—H4' 120.0
H12A—C12—H12C 109.5 C6'—C5'—C4' 120.0
H12B—C12—H12C 109.5 C6'—C5'—H5' 120.0
S2—C13—H13A 109.5 C4'—C5'—H5' 120.0
S2—C13—H13B 109.5 C5'—C6'—C1' 120.0
H13A—C13—H13B 109.5 C5'—C6'—C7' 117.2 (3)
S2—C13—H13C 109.5 C1'—C6'—C7' 122.7 (3)
H13A—C13—H13C 109.5 N1'—C7'—C6' 120.5 (4)
H13B—C13—H13C 109.5 N1'—C7'—C8' 117.6 (5)
C9—S1—C10 103.3 (3) C6'—C7'—C8' 121.8 (4)
C1—O1—Mo 124.2 (4) C7'—C8'—H8'A 109.5
C7—N1—N2 117.6 (5) C7'—C8'—H8'B 109.5
C7—N1—Mo 127.8 (4) H8'A—C8'—H8'B 109.5
N2—N1—Mo 114.5 (4) C7'—C8'—H8'C 109.5
C9—N2—N1 108.9 (5) H8'A—C8'—H8'C 109.5
C9—N3—Mo 119.3 (10) H8'B—C8'—H8'C 109.5
C9—N3—H3n 120.3 N2'—C9'—N3' 124.3 (8)
Mo—N3—H3n 120.3 N2'—C9'—S1' 120.4 (5)
O1—C1—C2 116.7 (3) N3'—C9'—S1' 115.2 (7)
O1—C1—C6 123.3 (3) C11'—C10'—S1' 113.5 (4)
C2—C1—C6 120.0 C11'—C10'—H10C 108.9
C3—C2—C1 120.0 S1'—C10'—H10C 108.9
C3—C2—H2 120.0 C11'—C10'—H10D 108.9
C1—C2—H2 120.0 S1'—C10'—H10D 108.9
C4—C3—C2 120.0 H10C—C10'—H10D 107.7
C4—C3—H3 120.0 C10'—C11'—H11D 109.5
C2—C3—H3 120.0 C10'—C11'—H11E 109.5
C3—C4—C5 120.0 H11D—C11'—H11E 109.5
C3—C4—H4 120.0 C10'—C11'—H11F 109.5
C5—C4—H4 120.0 H11D—C11'—H11F 109.5
C6—C5—C4 120.0 H11E—C11'—H11F 109.5
C13—S2—O2—Mo −125.78 (12) Mo—N3—C9—S1 −172.6 (9)
C12—S2—O2—Mo 130.66 (13) C10—S1—C9—N2 4.7 (8)
O3—Mo—O2—S2 139.32 (13) C10—S1—C9—N3 −175.7 (12)
O1'—Mo—O2—S2 22.32 (18) C9—S1—C10—C11 −81.4 (5)
N3—Mo—O2—S2 −123.3 (3) O4—Mo—O1'—C1' 44.6 (7)
O1—Mo—O2—S2 35.04 (18) O3—Mo—O1'—C1' 152.7 (6)
N3'—Mo—O2—S2 −129.7 (3) N3—Mo—O1'—C1' −64.4 (14)
N1—Mo—O2—S2 −48.22 (18) O1—Mo—O1'—C1' 160 (3)
N1'—Mo—O2—S2 −59.11 (17) N3'—Mo—O1'—C1' −74.9 (13)
O4—Mo—O1—C1 42.4 (7) N1—Mo—O1'—C1' −44.2 (7)
O3—Mo—O1—C1 149.6 (6) O2—Mo—O1'—C1' −127.6 (8)
O1'—Mo—O1—C1 −23.9 (18) N1'—Mo—O1'—C1' −49.4 (7)
N3—Mo—O1—C1 −82.8 (13) O4—Mo—N1'—C7' −69.8 (7)
N3'—Mo—O1—C1 −97.0 (11) O3—Mo—N1'—C7' 151.9 (4)
N1—Mo—O1—C1 −46.5 (7) O1'—Mo—N1'—C7' 23.5 (7)
O2—Mo—O1—C1 −128.6 (7) N3—Mo—N1'—C7' −166.9 (11)
N1'—Mo—O1—C1 −52.6 (7) O1—Mo—N1'—C7' 29.8 (8)
O4—Mo—N1—C7 −71.6 (8) N3'—Mo—N1'—C7' −171.9 (11)
O3—Mo—N1—C7 133.1 (5) N1—Mo—N1'—C7' −2.3 (17)
O1'—Mo—N1—C7 22.7 (7) O2—Mo—N1'—C7' 105.4 (7)
N3—Mo—N1—C7 −170.3 (11) O4—Mo—N1'—N2' 112.3 (6)
O1—Mo—N1—C7 28.0 (8) O3—Mo—N1'—N2' −26.0 (10)
N3'—Mo—N1—C7 −174.7 (10) O1'—Mo—N1'—N2' −154.4 (7)
O2—Mo—N1—C7 105.3 (8) N3—Mo—N1'—N2' 15.2 (9)
N1'—Mo—N1—C7 175 (3) O1—Mo—N1'—N2' −148.1 (7)
O4—Mo—N1—N2 107.1 (6) N3'—Mo—N1'—N2' 10.2 (9)
O3—Mo—N1—N2 −48.2 (12) N1—Mo—N1'—N2' 180 (3)
O1'—Mo—N1—N2 −158.6 (7) O2—Mo—N1'—N2' −72.5 (6)
N3—Mo—N1—N2 8.4 (9) C7'—N1'—N2'—C9' 172.1 (8)
O1—Mo—N1—N2 −153.3 (7) Mo—N1'—N2'—C9' −9.8 (9)
N3'—Mo—N1—N2 4.0 (9) O4—Mo—N3'—C9' −98.7 (15)
O2—Mo—N1—N2 −76.0 (6) O3—Mo—N3'—C9' 156.5 (15)
N1'—Mo—N1—N2 −5.9 (18) O1'—Mo—N3'—C9' 18 (2)
C7—N1—N2—C9 171.6 (8) N3—Mo—N3'—C9' −47 (8)
Mo—N1—N2—C9 −7.2 (9) O1—Mo—N3'—C9' 40 (2)
O4—Mo—N3—C9 −95.9 (15) N1—Mo—N3'—C9' −10.7 (14)
O3—Mo—N3—C9 158.4 (14) O2—Mo—N3'—C9' 71.4 (15)
O1'—Mo—N3—C9 12 (2) N1'—Mo—N3'—C9' −8.6 (13)
O1—Mo—N3—C9 30 (2) Mo—O1'—C1'—C2' −132.5 (5)
N3'—Mo—N3—C9 135 (10) Mo—O1'—C1'—C6' 48.3 (9)
N1—Mo—N3—C9 −7.9 (13) O1'—C1'—C2'—C3' −179.1 (6)
O2—Mo—N3—C9 74.2 (15) C6'—C1'—C2'—C3' 0.0
N1'—Mo—N3—C9 −4.8 (12) C1'—C2'—C3'—C4' 0.0
Mo—O1—C1—C2 −138.2 (4) C2'—C3'—C4'—C5' 0.0
Mo—O1—C1—C6 42.6 (9) C3'—C4'—C5'—C6' 0.0
O1—C1—C2—C3 −179.3 (6) C4'—C5'—C6'—C1' 0.0
C6—C1—C2—C3 0.0 C4'—C5'—C6'—C7' 178.0 (4)
C1—C2—C3—C4 0.0 O1'—C1'—C6'—C5' 179.1 (6)
C2—C3—C4—C5 0.0 C2'—C1'—C6'—C5' 0.0
C3—C4—C5—C6 0.0 O1'—C1'—C6'—C7' 1.2 (6)
C4—C5—C6—C1 0.0 C2'—C1'—C6'—C7' −177.9 (4)
C4—C5—C6—C7 178.1 (4) N2'—N1'—C7'—C6' −178.4 (6)
O1—C1—C6—C5 179.2 (6) Mo—N1'—C7'—C6' 3.7 (10)
C2—C1—C6—C5 0.0 N2'—N1'—C7'—C8' 0.1 (11)
O1—C1—C6—C7 1.3 (6) Mo—N1'—C7'—C8' −177.8 (5)
C2—C1—C6—C7 −178.0 (4) C5'—C6'—C7'—N1' 159.1 (6)
N2—N1—C7—C6 179.0 (6) C1'—C6'—C7'—N1' −23.0 (8)
Mo—N1—C7—C6 −2.4 (11) C5'—C6'—C7'—C8' −19.4 (6)
N2—N1—C7—C8 −2.0 (11) C1'—C6'—C7'—C8' 158.6 (4)
Mo—N1—C7—C8 176.7 (5) N1'—N2'—C9'—N3' 2.3 (17)
C5—C6—C7—N1 161.3 (6) N1'—N2'—C9'—S1' −176.8 (6)
C1—C6—C7—N1 −20.6 (8) Mo—N3'—C9'—N2' 7 (2)
C5—C6—C7—C8 −17.7 (6) Mo—N3'—C9'—S1' −173.7 (8)
C1—C6—C7—C8 160.3 (4) C10'—S1'—C9'—N2' 5.2 (8)
N1—N2—C9—N3 0.9 (16) C10'—S1'—C9'—N3' −174.0 (12)
N1—N2—C9—S1 −179.5 (6) C9'—S1'—C10'—C11' −80.7 (5)
Mo—N3—C9—N2 7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3n···O3i 0.88 2.23 3.090 (15) 166
N3′—H3n′···O3i 0.88 1.94 2.816 (16) 171

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6848).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Ceylan, B. I., Kurt, Y. D. & Ulkuseven, B. (2009). Rev. Inorg. Chem. 29, 49–67.
  5. Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Takjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst E68, m911. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026566/hb6848sup1.cif

e-68-0m944-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026566/hb6848Isup2.hkl

e-68-0m944-Isup2.hkl (203.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES