Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m948. doi: 10.1107/S1600536812026712

Bis{1-[(1H-benzotriazol-1-yl)meth­yl]-2-methyl-1H-imidazole-κN 3}dichlorido­cobalt(II)

Haiyan Yang a,*, Yinghua Li a, Yaomin Zhao a, Wenzhuo Li a, Fang He a
PMCID: PMC3393205  PMID: 22807773

Abstract

In the title mononuclear complex, [CoCl2(C11H11N5)2], the CoII atom is four-coordinated by two ligand N atoms and two Cl atoms in a distorted tetra­hedral geometry. In the crystal, mol­ecules are stacked through π–π inter­actions [centroid–centroid distances = 3.473 (2), 3.807 (3), 3.883 (2) and 3.676 (2) Å], forming a three-dimensional supra­molecular network.

Related literature  

For background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009); Meng et al. (2009); Mu et al. (2011); Zhao et al. (2012).graphic file with name e-68-0m948-scheme1.jpg

Experimental  

Crystal data  

  • [CoCl2(C11H11N5)2]

  • M r = 556.33

  • Triclinic, Inline graphic

  • a = 8.1684 (16) Å

  • b = 12.691 (3) Å

  • c = 13.289 (3) Å

  • α = 65.48 (3)°

  • β = 79.66 (3)°

  • γ = 84.30 (3)°

  • V = 1232.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.18 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006) T min = 0.819, T max = 0.848

  • 12593 measured reflections

  • 4330 independent reflections

  • 3512 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.101

  • S = 1.08

  • 4330 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026712/vm2178sup1.cif

e-68-0m948-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026712/vm2178Isup2.hkl

e-68-0m948-Isup2.hkl (212.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Zhongyuan University of Technology for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

supplementary crystallographic information

Comment

Multidentate N-heterocyclic ligands, such as imidazole, triazole, tetrazole and their derivative, have more coordination sites and can result in coordination polymers with novel network patterns (Yang et al., 2009; Meng et al., 2009). These ligands have been the focus of attention in coordination chemistry. In recent years, our group has designed and synthesized a series of N-heterocyclic compounds and studied their coordination behaviors (Mu et al., 2011; Zhao et al., 2012). As a continuation of our research, we synthesized a N-heterocyclic compound 1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazole), and used it as ligand to react with CoCl2, generating a new complex, [Co(C11H11N5)2Cl2] (I), which is reported here.

The crystal structure of the title compound is depicted in Fig. 1. The CoII atom is four-coordinated by two N atoms from two ligands, with Co—N bond lengths of 2.012 (3) Å and 2.026 (3) Å., and two Cl atoms, with Co—Cl bond lengths of 2.2449 (10) Å and 2.2527 (14) Å. The bond angles around the Co atom vary from 102.74 (8) ° (N10—Co1—Cl1) to 115.96 (8) ° (N7—Co1—Cl1). The dihedral angle between the imidazole planes in the two ligands is 77.2 (2) °.

In the crystal structure, the adjacent mononuclear structure units are stacked on each other along the b- and c axis through π–π interactions as is shown in Fig. 2. The centroid-centroid distances between the two adjacent aromatic planes are 3.883 (2) Å (planes A and B), 3.807 (3) Å (planes B and C), 3.473 (2) Å (planes C and D), 4.593 (4) Å (planes E and F) and 3.676 (2) Å (planes G and H), respectively. In addition, these mononuclear structure units are parallel to each other along the a axis, forming a three-dimensional supramolecular network.

Experimental

A methanol solution (5 ml) of 1-((benzotriazol-1-yl)methyl)- 1-H-1,3-(2-methyl-imdazol) (0.1 mmol) was added dropwise into a methanol solution (3 ml) of CoCl2 (0.05 mmol). The resulting solution was left at room temperature. After two weeks, good quality blue crystals were obtained from the solution and dried in air.

Refinement

H atoms were generated geometrically, with C-H = 0.96, 0.97 and 0.93Å for methyl, methylene and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title complex, showing the labeling of the 30% probability ellipsolids.

Fig. 2.

Fig. 2.

View of the title complex along the a axis, showing the π–π stacking interactions between the molecules.

Crystal data

[CoCl2(C11H11N5)2] Z = 2
Mr = 556.33 F(000) = 570
Triclinic, P1 Dx = 1.499 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1684 (16) Å Cell parameters from 3451 reflections
b = 12.691 (3) Å θ = 2.5–29.2°
c = 13.289 (3) Å µ = 0.95 mm1
α = 65.48 (3)° T = 293 K
β = 79.66 (3)° Prism, blue
γ = 84.30 (3)° 0.22 × 0.21 × 0.18 mm
V = 1232.5 (6) Å3

Data collection

Rigaku Saturn diffractometer 4330 independent reflections
Radiation source: fine-focus sealed tube 3512 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 28.5714 pixels mm-1 θmax = 25.0°, θmin = 2.5°
ω scans h = −9→9
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006) k = −15→15
Tmin = 0.819, Tmax = 0.848 l = −15→15
12593 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.5956P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4330 reflections Δρmax = 0.27 e Å3
318 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0016 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.74031 (5) 0.25471 (4) 1.02928 (4) 0.03397 (15)
Cl2 0.96039 (10) 0.29359 (8) 1.08673 (7) 0.0442 (2)
Cl1 0.54177 (11) 0.15986 (8) 1.17231 (7) 0.0499 (3)
N10 0.8046 (3) 0.1424 (2) 0.9553 (2) 0.0355 (6)
N9 0.9277 (3) 0.0521 (2) 0.8515 (2) 0.0361 (6)
N8 0.5347 (3) 0.5454 (2) 0.7929 (2) 0.0347 (6)
N7 0.6681 (3) 0.4063 (2) 0.9140 (2) 0.0356 (6)
N6 0.3355 (3) 0.5794 (2) 0.6656 (2) 0.0366 (6)
N5 1.0308 (3) 0.0933 (2) 0.6572 (2) 0.0355 (6)
N4 0.1979 (4) 0.5126 (3) 0.7064 (2) 0.0506 (8)
C22 0.5192 (4) 0.4454 (3) 0.8859 (3) 0.0341 (7)
C21 0.3696 (4) 0.6166 (3) 0.5519 (3) 0.0351 (8)
C20 1.0485 (4) 0.0219 (3) 0.7720 (3) 0.0402 (8)
H20A 1.1599 0.0296 0.7836 0.048*
H20B 1.0357 −0.0585 0.7865 0.048*
C19 0.9193 (4) 0.0867 (3) 0.5953 (3) 0.0355 (8)
C18 0.7811 (4) 0.4857 (3) 0.8355 (3) 0.0412 (8)
H18 0.8957 0.4805 0.8347 0.049*
C17 1.0626 (4) 0.2316 (3) 0.8261 (3) 0.0518 (10)
H17A 1.0585 0.2762 0.8698 0.078*
H17B 1.0434 0.2820 0.7517 0.078*
H17C 1.1701 0.1939 0.8228 0.078*
N3 1.1490 (4) 0.1713 (3) 0.5909 (3) 0.0506 (8)
C16 0.7157 (4) 0.0454 (3) 0.9789 (3) 0.0458 (9)
H16 0.6192 0.0222 1.0307 0.055*
C15 0.9326 (4) 0.1432 (3) 0.8783 (3) 0.0336 (7)
C14 0.7008 (4) 0.5706 (3) 0.7612 (3) 0.0431 (9)
H14 0.7478 0.6343 0.7001 0.052*
C13 0.3999 (4) 0.6178 (3) 0.7388 (3) 0.0412 (8)
H13A 0.3096 0.6206 0.7962 0.049*
H13B 0.4391 0.6960 0.6957 0.049*
N2 0.1465 (4) 0.5038 (3) 0.6233 (3) 0.0545 (8)
C12 0.9755 (4) 0.1649 (3) 0.4876 (3) 0.0429 (9)
N1 1.1164 (4) 0.2153 (3) 0.4899 (3) 0.0561 (9)
C11 0.4878 (4) 0.6888 (3) 0.4702 (3) 0.0516 (10)
H11 0.5704 0.7210 0.4876 0.062*
C10 0.2473 (4) 0.5673 (3) 0.5262 (3) 0.0409 (8)
C9 0.3583 (4) 0.3907 (3) 0.9458 (3) 0.0548 (10)
H9A 0.3199 0.3536 0.9047 0.082*
H9B 0.2778 0.4489 0.9524 0.082*
H9C 0.3727 0.3341 1.0190 0.082*
C8 0.7901 (4) −0.0098 (3) 0.9155 (3) 0.0477 (9)
H8 0.7552 −0.0771 0.9150 0.057*
C7 0.7637 (6) 0.1099 (4) 0.4233 (4) 0.0684 (13)
H7 0.7086 0.1153 0.3658 0.082*
C6 0.7829 (4) 0.0189 (3) 0.6201 (3) 0.0506 (9)
H6 0.7453 −0.0331 0.6926 0.061*
C5 0.7071 (5) 0.0326 (4) 0.5325 (4) 0.0657 (12)
H5 0.6143 −0.0109 0.5456 0.079*
C4 0.2367 (5) 0.5902 (4) 0.4153 (3) 0.0541 (10)
H4 0.1549 0.5580 0.3973 0.065*
C3 0.8964 (6) 0.1772 (4) 0.3983 (3) 0.0606 (11)
H3 0.9330 0.2290 0.3255 0.073*
C2 0.3513 (5) 0.6615 (4) 0.3352 (3) 0.0623 (11)
H2 0.3476 0.6788 0.2604 0.075*
C1 0.4746 (5) 0.7095 (4) 0.3621 (3) 0.0645 (12)
H1 0.5510 0.7575 0.3043 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0345 (3) 0.0377 (3) 0.0270 (2) −0.00561 (19) −0.00427 (19) −0.0096 (2)
Cl2 0.0399 (5) 0.0547 (5) 0.0383 (5) −0.0103 (4) −0.0084 (4) −0.0162 (4)
Cl1 0.0476 (5) 0.0608 (6) 0.0335 (5) −0.0190 (4) 0.0048 (4) −0.0121 (4)
N10 0.0339 (15) 0.0412 (16) 0.0308 (15) −0.0087 (12) −0.0017 (13) −0.0135 (13)
N9 0.0444 (16) 0.0333 (15) 0.0281 (15) −0.0064 (13) −0.0051 (13) −0.0090 (12)
N8 0.0347 (15) 0.0357 (15) 0.0331 (15) −0.0004 (12) −0.0090 (12) −0.0121 (13)
N7 0.0327 (15) 0.0389 (16) 0.0318 (15) −0.0045 (12) −0.0031 (12) −0.0109 (13)
N6 0.0350 (15) 0.0396 (16) 0.0366 (16) −0.0028 (12) −0.0104 (13) −0.0144 (13)
N5 0.0402 (16) 0.0354 (15) 0.0287 (15) −0.0065 (12) −0.0038 (13) −0.0102 (12)
N4 0.0496 (19) 0.056 (2) 0.0401 (18) −0.0179 (15) −0.0051 (15) −0.0106 (15)
C22 0.0317 (18) 0.0379 (19) 0.0318 (18) −0.0050 (14) −0.0030 (15) −0.0130 (15)
C21 0.0297 (18) 0.0391 (19) 0.0383 (19) 0.0046 (15) −0.0070 (15) −0.0178 (16)
C20 0.047 (2) 0.041 (2) 0.0327 (19) 0.0042 (16) −0.0083 (16) −0.0154 (16)
C19 0.0361 (18) 0.0365 (19) 0.0354 (19) 0.0007 (15) −0.0055 (15) −0.0164 (16)
C18 0.0285 (18) 0.050 (2) 0.039 (2) −0.0075 (16) −0.0031 (16) −0.0114 (17)
C17 0.055 (2) 0.054 (2) 0.048 (2) −0.0167 (19) 0.0076 (19) −0.0263 (19)
N3 0.058 (2) 0.0488 (18) 0.0410 (18) −0.0219 (16) 0.0027 (16) −0.0144 (15)
C16 0.044 (2) 0.053 (2) 0.042 (2) −0.0197 (18) 0.0044 (17) −0.0209 (18)
C15 0.0377 (18) 0.0326 (18) 0.0294 (17) −0.0040 (14) −0.0092 (15) −0.0092 (15)
C14 0.040 (2) 0.041 (2) 0.038 (2) −0.0114 (16) −0.0046 (16) −0.0040 (16)
C13 0.045 (2) 0.040 (2) 0.043 (2) 0.0046 (16) −0.0163 (17) −0.0192 (17)
N2 0.0509 (19) 0.065 (2) 0.048 (2) −0.0192 (16) −0.0110 (16) −0.0184 (17)
C12 0.055 (2) 0.038 (2) 0.033 (2) 0.0056 (17) −0.0085 (17) −0.0136 (16)
N1 0.074 (2) 0.0477 (19) 0.0361 (18) −0.0151 (17) 0.0057 (16) −0.0091 (15)
C11 0.036 (2) 0.061 (2) 0.055 (2) −0.0104 (18) −0.0029 (18) −0.021 (2)
C10 0.0387 (19) 0.046 (2) 0.042 (2) −0.0005 (16) −0.0097 (17) −0.0205 (17)
C9 0.036 (2) 0.065 (3) 0.048 (2) −0.0130 (18) −0.0003 (18) −0.009 (2)
C8 0.058 (2) 0.046 (2) 0.040 (2) −0.0248 (19) 0.0001 (18) −0.0167 (18)
C7 0.074 (3) 0.084 (3) 0.073 (3) 0.040 (3) −0.048 (3) −0.051 (3)
C6 0.044 (2) 0.056 (2) 0.053 (2) −0.0062 (18) −0.0097 (19) −0.022 (2)
C5 0.046 (2) 0.082 (3) 0.084 (3) 0.009 (2) −0.026 (2) −0.044 (3)
C4 0.053 (2) 0.071 (3) 0.049 (2) 0.000 (2) −0.015 (2) −0.032 (2)
C3 0.084 (3) 0.059 (3) 0.038 (2) 0.028 (2) −0.020 (2) −0.022 (2)
C2 0.065 (3) 0.085 (3) 0.043 (2) 0.002 (2) −0.009 (2) −0.032 (2)
C1 0.057 (3) 0.083 (3) 0.041 (2) −0.015 (2) 0.010 (2) −0.018 (2)

Geometric parameters (Å, º)

Co1—N7 2.012 (3) C17—H17A 0.9600
Co1—N10 2.026 (3) C17—H17B 0.9600
Co1—Cl2 2.2449 (10) C17—H17C 0.9600
Co1—Cl1 2.2527 (14) N3—N1 1.289 (4)
N10—C15 1.323 (4) C16—C8 1.339 (5)
N10—C16 1.385 (4) C16—H16 0.9300
N9—C15 1.350 (4) C14—H14 0.9300
N9—C8 1.372 (4) C13—H13A 0.9700
N9—C20 1.457 (4) C13—H13B 0.9700
N8—C22 1.351 (4) N2—C10 1.371 (4)
N8—C14 1.375 (4) C12—N1 1.381 (5)
N8—C13 1.452 (4) C12—C3 1.396 (5)
N7—C22 1.324 (4) C11—C1 1.372 (5)
N7—C18 1.387 (4) C11—H11 0.9300
N6—N4 1.365 (4) C10—C4 1.396 (5)
N6—C21 1.366 (4) C9—H9A 0.9600
N6—C13 1.446 (4) C9—H9B 0.9600
N5—N3 1.360 (4) C9—H9C 0.9600
N5—C19 1.361 (4) C8—H8 0.9300
N5—C20 1.441 (4) C7—C3 1.355 (6)
N4—N2 1.298 (4) C7—C5 1.397 (6)
C22—C9 1.480 (4) C7—H7 0.9300
C21—C10 1.390 (4) C6—C5 1.355 (5)
C21—C11 1.387 (5) C6—H6 0.9300
C20—H20A 0.9700 C5—H5 0.9300
C20—H20B 0.9700 C4—C2 1.357 (5)
C19—C6 1.383 (4) C4—H4 0.9300
C19—C12 1.386 (4) C3—H3 0.9300
C18—C14 1.332 (5) C2—C1 1.395 (6)
C18—H18 0.9300 C2—H2 0.9300
C17—C15 1.480 (4) C1—H1 0.9300
N7—Co1—N10 108.31 (11) N10—C15—N9 110.3 (3)
N7—Co1—Cl2 106.00 (8) N10—C15—C17 125.8 (3)
N10—Co1—Cl2 111.09 (8) N9—C15—C17 123.9 (3)
N7—Co1—Cl1 115.96 (8) C18—C14—N8 106.3 (3)
N10—Co1—Cl1 102.74 (8) C18—C14—H14 126.8
Cl2—Co1—Cl1 112.73 (4) N8—C14—H14 126.8
C15—N10—C16 106.0 (3) N6—C13—N8 114.5 (3)
C15—N10—Co1 129.7 (2) N6—C13—H13A 108.6
C16—N10—Co1 124.2 (2) N8—C13—H13A 108.6
C15—N9—C8 107.5 (3) N6—C13—H13B 108.6
C15—N9—C20 126.7 (3) N8—C13—H13B 108.6
C8—N9—C20 125.7 (3) H13A—C13—H13B 107.6
C22—N8—C14 108.1 (3) N4—N2—C10 108.7 (3)
C22—N8—C13 126.5 (3) N1—C12—C19 108.3 (3)
C14—N8—C13 125.4 (3) N1—C12—C3 130.9 (4)
C22—N7—C18 106.3 (3) C19—C12—C3 120.7 (4)
C22—N7—Co1 130.8 (2) N3—N1—C12 108.7 (3)
C18—N7—Co1 122.4 (2) C1—C11—C21 115.5 (3)
N4—N6—C21 110.0 (3) C1—C11—H11 122.2
N4—N6—C13 118.9 (3) C21—C11—H11 122.2
C21—N6—C13 129.8 (3) N2—C10—C21 108.9 (3)
N3—N5—C19 110.3 (3) N2—C10—C4 130.2 (3)
N3—N5—C20 119.8 (3) C21—C10—C4 120.9 (3)
C19—N5—C20 129.4 (3) C22—C9—H9A 109.5
N2—N4—N6 108.5 (3) C22—C9—H9B 109.5
N7—C22—N8 109.6 (3) H9A—C9—H9B 109.5
N7—C22—C9 126.4 (3) C22—C9—H9C 109.5
N8—C22—C9 124.0 (3) H9A—C9—H9C 109.5
N6—C21—C10 103.9 (3) H9B—C9—H9C 109.5
N6—C21—C11 133.7 (3) C16—C8—N9 106.7 (3)
C10—C21—C11 122.3 (3) C16—C8—H8 126.6
N5—C20—N9 112.9 (3) N9—C8—H8 126.6
N5—C20—H20A 109.0 C3—C7—C5 122.1 (4)
N9—C20—H20A 109.0 C3—C7—H7 119.0
N5—C20—H20B 109.0 C5—C7—H7 119.0
N9—C20—H20B 109.0 C5—C6—C19 116.2 (4)
H20A—C20—H20B 107.8 C5—C6—H6 121.9
N5—C19—C6 133.5 (3) C19—C6—H6 121.9
N5—C19—C12 104.1 (3) C6—C5—C7 122.2 (4)
C6—C19—C12 122.3 (3) C6—C5—H5 118.9
C14—C18—N7 109.7 (3) C7—C5—H5 118.9
C14—C18—H18 125.1 C2—C4—C10 117.0 (3)
N7—C18—H18 125.1 C2—C4—H4 121.5
C15—C17—H17A 109.5 C10—C4—H4 121.5
C15—C17—H17B 109.5 C7—C3—C12 116.6 (4)
H17A—C17—H17B 109.5 C7—C3—H3 121.7
C15—C17—H17C 109.5 C12—C3—H3 121.7
H17A—C17—H17C 109.5 C4—C2—C1 121.6 (4)
H17B—C17—H17C 109.5 C4—C2—H2 119.2
N1—N3—N5 108.6 (3) C1—C2—H2 119.2
C8—C16—N10 109.4 (3) C11—C1—C2 122.7 (4)
C8—C16—H16 125.3 C11—C1—H1 118.7
N10—C16—H16 125.3 C2—C1—H1 118.7
N7—Co1—N10—C15 68.8 (3) Co1—N10—C15—C17 −0.5 (5)
Cl2—Co1—N10—C15 −47.3 (3) C8—N9—C15—N10 −0.4 (4)
Cl1—Co1—N10—C15 −168.0 (3) C20—N9—C15—N10 −178.6 (3)
N7—Co1—N10—C16 −111.3 (3) C8—N9—C15—C17 −179.4 (3)
Cl2—Co1—N10—C16 132.7 (2) C20—N9—C15—C17 2.4 (5)
Cl1—Co1—N10—C16 11.9 (3) N7—C18—C14—N8 0.2 (4)
N10—Co1—N7—C22 91.0 (3) C22—N8—C14—C18 0.0 (4)
Cl2—Co1—N7—C22 −149.7 (3) C13—N8—C14—C18 176.8 (3)
Cl1—Co1—N7—C22 −23.8 (3) N4—N6—C13—N8 95.8 (4)
N10—Co1—N7—C18 −79.4 (3) C21—N6—C13—N8 −98.6 (4)
Cl2—Co1—N7—C18 39.9 (3) C22—N8—C13—N6 −81.8 (4)
Cl1—Co1—N7—C18 165.8 (2) C14—N8—C13—N6 102.0 (4)
C21—N6—N4—N2 1.7 (4) N6—N4—N2—C10 −1.6 (4)
C13—N6—N4—N2 169.9 (3) N5—C19—C12—N1 −0.5 (4)
C18—N7—C22—N8 0.4 (4) C6—C19—C12—N1 −177.7 (3)
Co1—N7—C22—N8 −171.2 (2) N5—C19—C12—C3 176.2 (3)
C18—N7—C22—C9 −179.2 (3) C6—C19—C12—C3 −0.9 (5)
Co1—N7—C22—C9 9.2 (5) N5—N3—N1—C12 −0.9 (4)
C14—N8—C22—N7 −0.3 (4) C19—C12—N1—N3 0.9 (4)
C13—N8—C22—N7 −177.0 (3) C3—C12—N1—N3 −175.4 (4)
C14—N8—C22—C9 179.3 (3) N6—C21—C11—C1 −176.7 (4)
C13—N8—C22—C9 2.7 (5) C10—C21—C11—C1 0.8 (5)
N4—N6—C21—C10 −1.0 (3) N4—N2—C10—C21 0.9 (4)
C13—N6—C21—C10 −167.6 (3) N4—N2—C10—C4 −175.8 (4)
N4—N6—C21—C11 176.8 (4) N6—C21—C10—N2 0.1 (4)
C13—N6—C21—C11 10.2 (6) C11—C21—C10—N2 −178.1 (3)
N3—N5—C20—N9 110.2 (3) N6—C21—C10—C4 177.2 (3)
C19—N5—C20—N9 −79.0 (4) C11—C21—C10—C4 −1.0 (5)
C15—N9—C20—N5 −77.1 (4) N10—C16—C8—N9 0.2 (4)
C8—N9—C20—N5 105.0 (4) C15—N9—C8—C16 0.1 (4)
N3—N5—C19—C6 176.6 (4) C20—N9—C8—C16 178.3 (3)
C20—N5—C19—C6 5.1 (6) N5—C19—C6—C5 −175.7 (4)
N3—N5—C19—C12 0.0 (3) C12—C19—C6—C5 0.4 (5)
C20—N5—C19—C12 −171.5 (3) C19—C6—C5—C7 0.5 (6)
C22—N7—C18—C14 −0.4 (4) C3—C7—C5—C6 −1.0 (7)
Co1—N7—C18—C14 172.1 (2) N2—C10—C4—C2 176.8 (4)
C19—N5—N3—N1 0.6 (4) C21—C10—C4—C2 0.4 (6)
C20—N5—N3—N1 173.0 (3) C5—C7—C3—C12 0.5 (6)
C15—N10—C16—C8 −0.5 (4) N1—C12—C3—C7 176.3 (4)
Co1—N10—C16—C8 179.6 (2) C19—C12—C3—C7 0.4 (5)
C16—N10—C15—N9 0.5 (4) C10—C4—C2—C1 0.3 (6)
Co1—N10—C15—N9 −179.5 (2) C21—C11—C1—C2 −0.1 (6)
C16—N10—C15—C17 179.5 (3) C4—C2—C1—C11 −0.4 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2178).

References

  1. Meng, X.-R., Zhu, X.-Q., Qi, Y.-F., Hou, H.-W. & Fan, Y.-T. (2009). J. Mol. Struct. 934, 28–36.
  2. Mu, Y.-J., Fu, J.-H., Song, Y.-J., Li, Z., Hou, H.-W. & Fan, Y.-T. (2011). Cryst. Growth Des. 11 , 2183–2193.
  3. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049–4056. [DOI] [PubMed]
  6. Zhao, L., Liu, B., Li, T. & Meng, X. (2012). Acta Cryst. E68, m162. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026712/vm2178sup1.cif

e-68-0m948-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026712/vm2178Isup2.hkl

e-68-0m948-Isup2.hkl (212.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES