Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 20;68(Pt 7):m951. doi: 10.1107/S1600536812026591

Dichlorido[methyl 2-(quinolin-8-yl­oxy-κ2 N,O)acetate-κO]mercury(II)

Yu-Hong Wang a,*, Xue-Hua Zhu a, Rui-Feng Song a
PMCID: PMC3393207  PMID: 22807775

Abstract

In the neutral title complex, [HgCl2(C12H11NO3)], the HgII ion is penta­coordinated by two Cl atoms, one N atom and two weakly coordinating O atoms from the methyl 2-(quinolin-8-yl­oxy)acetate ligand. The coordination around the HgII ion may be described as highly distorted trigonal–bipyramidal. Centrosymmetric dimers are formed by an additional weak Hg⋯Cl inter­action, leading to a distorted octa­hedral coordination geometry around the HgII ion.

Related literature  

For the use of quinolin-8-yl­oxy acetic acid and its derivatives as ligands in transition metal complexes, see: Cheng et al. (2007); Song et al. (2004); Wang et al. (2005, 2008). graphic file with name e-68-0m951-scheme1.jpg

Experimental  

Crystal data  

  • [HgCl2(C12H11NO3)]

  • M r = 488.71

  • Triclinic, Inline graphic

  • a = 7.2644 (4) Å

  • b = 9.7607 (2) Å

  • c = 10.8411 (6) Å

  • α = 71.317 (7)°

  • β = 75.453 (7)°

  • γ = 69.816 (8)°

  • V = 674.87 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.80 mm−1

  • T = 223 K

  • 0.50 × 0.25 × 0.10 mm

Data collection  

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.067, T max = 0.385

  • 5090 measured reflections

  • 2432 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.142

  • S = 1.07

  • 2432 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 3.58 e Å−3

  • Δρmin = −2.39 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026591/im2385sup1.cif

e-68-0m951-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026591/im2385Isup2.hkl

e-68-0m951-Isup2.hkl (119.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Hg1—Cl1 2.340 (2)
Hg1—Cl2 2.350 (2)
Hg1—N1 2.463 (6)
Hg1—O1 2.746 (6)
Hg1—O3 2.876 (6)
Hg1—Cl1i 3.204 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the Science and Technology Foundation of the Ministry of Development of China (2010-K6–8).

supplementary crystallographic information

Comment

Quinolin-8-yloxy acetic acid and it's derivatives are well known ligands in transition metal coordination compounds (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). Some metal complexes with such ligands are being prepared because of their intriguing structural diversity and potential uses as functional materials (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). So, we prepared the title HgII complex with methyl-2-(quinoline-8-yloxy)-acetate ligand, (I).

In the title compound, the HgII atom is five-coordinated by two Cl atoms, one N atom and two O atoms from methyl-2-(quinoline-8-yloxy)-acetate ligand, forming a highly distorted trigonal bipyramidal geometry (Fig. 1). Hg—Cl bond lengths are 2.340 (2) and 2.350 (2) Å, and Hg—N bond lengths are 2.463 (6) Å. The weak coordinative Hg—O bond lengths are 2.746 (6) Å and 2.876 (6) Å. Angles around Hg are in a range of 56.55 (16)–153.41 (8)° (Table 1). If these are considered to be chemically signifcant interactions, two monoclear Hg complexes are formed into the centrosymmetric dimers by weak Hg—Cl interactions (Fig. 1). So, the coordination around Hg atom can act as a distrorted octahedral geometry.

The molecular packing is controlled by these dimers and intermolecular π-π interactions; the quinoline rings are separated by 3.527 (1) and 3.813 (1) Å (Fig. 2).

Experimental

Quinolin-8-yloxy acetic acid (0.0203 g, 0.1 mmol), HgCl2 (0.0272 g, 0.1 mmol), methanol (3 ml) and triethylamine (0.0101 g, 0.1 mmol) were placed in a thick Pyrex tube and heated to 130 C° for 5 days. After cooling at a rate of 5 C°/h to ambient temperature, yellow prismatic crystals were collected, washed with anhydrous ethanol, and dried at room temperature. The yield is 51% based on quinolin-8-yloxy acetic acid. Analysis found: C, 29.91; H, 2.30; N, 2.87%; calculated for C12H11Cl2HgNO3: C, 29.49; H, 2.27; N, 2.87%.

Refinement

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.94 (aromatic), 0.98 (methylene) and 0.97 Å (methyl), and with Uiso(aromatic and ethyl) = 1.2Ueq(C) and Uiso(methylene) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with 30% probability displacement ellipsoids [symmetry codes: (i) 1 - x, -y, 2 - z]. The dashed line indicates the weak Hg···Cl interaction.

Fig. 2.

Fig. 2.

A view of intermolecular π-π interactions, interactions between the parallel quinoline rings of neighbouring complexes [symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) -x, 1 - y, 2 - z].

Crystal data

[HgCl2(C12H11NO3)] Z = 2
Mr = 488.71 F(000) = 456
Triclinic, P1 Dx = 2.405 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 7.2644 (4) Å Cell parameters from 3438 reflections
b = 9.7607 (2) Å θ = 3.0–27.5°
c = 10.8411 (6) Å µ = 11.80 mm1
α = 71.317 (7)° T = 223 K
β = 75.453 (7)° Prism, yellow
γ = 69.816 (8)° 0.50 × 0.25 × 0.10 mm
V = 674.87 (5) Å3

Data collection

Rigaku Saturn diffractometer 2432 independent reflections
Radiation source: fine-focus sealed tube 2330 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 14.63 pixels mm-1 θmax = 25.5°, θmin = 3.0°
ω scans h = −8→8
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −11→9
Tmin = 0.067, Tmax = 0.385 l = −13→10
5090 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.114P)2] where P = (Fo2 + 2Fc2)/3
2432 reflections (Δ/σ)max = 0.001
174 parameters Δρmax = 3.58 e Å3
0 restraints Δρmin = −2.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.48080 (4) 0.17195 (3) 0.82524 (2) 0.0283 (2)
Cl1 0.7584 (4) 0.0079 (3) 0.9214 (2) 0.0343 (5)
Cl2 0.2251 (4) 0.2330 (3) 0.7032 (2) 0.0328 (5)
O1 0.5887 (9) 0.4276 (6) 0.6794 (5) 0.0267 (12)
O2 0.9795 (10) 0.3004 (7) 0.4386 (6) 0.0293 (13)
O3 0.7782 (11) 0.1803 (7) 0.5930 (6) 0.0350 (15)
N1 0.3624 (11) 0.3914 (8) 0.9197 (6) 0.0229 (14)
C1 0.2572 (13) 0.3719 (9) 1.0411 (8) 0.0250 (17)
H1 0.2485 0.2744 1.0883 0.030*
C2 0.1591 (14) 0.4918 (11) 1.1008 (8) 0.0291 (19)
H2 0.0929 0.4727 1.1882 0.035*
C3 0.1596 (13) 0.6348 (10) 1.0327 (8) 0.0280 (18)
H3 0.0892 0.7160 1.0707 0.034*
C4 0.2680 (12) 0.6597 (9) 0.9034 (7) 0.0229 (16)
C5 0.2793 (15) 0.8066 (10) 0.8262 (9) 0.032 (2)
H5 0.2102 0.8915 0.8595 0.038*
C6 0.3906 (15) 0.8224 (9) 0.7043 (9) 0.0306 (19)
H6 0.3995 0.9189 0.6541 0.037*
C7 0.4920 (14) 0.6985 (10) 0.6522 (8) 0.0288 (19)
H7 0.5649 0.7133 0.5665 0.035*
C8 0.4873 (13) 0.5564 (9) 0.7230 (8) 0.0232 (16)
C9 0.3727 (12) 0.5317 (9) 0.8506 (7) 0.0226 (16)
C10 0.7341 (16) 0.4428 (10) 0.5679 (8) 0.030 (2)
H10A 0.8339 0.4787 0.5842 0.037*
H10B 0.6737 0.5164 0.4927 0.037*
C11 0.8301 (13) 0.2914 (9) 0.5380 (7) 0.0221 (16)
C12 1.0873 (14) 0.1595 (10) 0.3990 (9) 0.0313 (19)
H12A 1.1489 0.0841 0.4717 0.047*
H12B 1.1890 0.1780 0.3236 0.047*
H12C 0.9953 0.1234 0.3756 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0304 (3) 0.0247 (3) 0.0247 (3) −0.00519 (19) −0.00101 (17) −0.00514 (17)
Cl1 0.0304 (12) 0.0320 (12) 0.0350 (11) −0.0028 (10) −0.0050 (9) −0.0083 (9)
Cl2 0.0360 (13) 0.0344 (11) 0.0255 (10) −0.0096 (10) −0.0038 (9) −0.0057 (8)
O1 0.027 (3) 0.025 (3) 0.022 (3) −0.011 (3) 0.017 (2) −0.009 (2)
O2 0.030 (3) 0.025 (3) 0.028 (3) −0.006 (3) 0.010 (3) −0.012 (2)
O3 0.041 (4) 0.025 (3) 0.034 (3) −0.013 (3) 0.014 (3) −0.012 (2)
N1 0.027 (4) 0.023 (3) 0.019 (3) −0.008 (3) 0.002 (3) −0.009 (3)
C1 0.024 (4) 0.030 (4) 0.021 (4) −0.007 (4) 0.000 (3) −0.009 (3)
C2 0.029 (5) 0.039 (5) 0.019 (4) −0.012 (4) 0.005 (4) −0.012 (3)
C3 0.018 (4) 0.038 (5) 0.030 (4) −0.005 (4) 0.003 (3) −0.019 (4)
C4 0.020 (4) 0.024 (4) 0.022 (4) −0.001 (3) 0.002 (3) −0.011 (3)
C5 0.041 (6) 0.025 (4) 0.034 (4) −0.012 (4) 0.000 (4) −0.014 (4)
C6 0.034 (5) 0.017 (4) 0.034 (5) −0.004 (4) −0.003 (4) −0.003 (3)
C7 0.035 (5) 0.028 (4) 0.022 (4) −0.009 (4) −0.002 (4) −0.005 (3)
C8 0.021 (4) 0.020 (4) 0.024 (4) −0.003 (3) 0.003 (3) −0.009 (3)
C9 0.018 (4) 0.030 (4) 0.020 (3) −0.006 (3) −0.001 (3) −0.009 (3)
C10 0.041 (6) 0.032 (5) 0.018 (4) −0.015 (4) 0.010 (4) −0.012 (3)
C11 0.023 (4) 0.024 (4) 0.019 (4) −0.009 (3) 0.005 (3) −0.008 (3)
C12 0.023 (5) 0.029 (5) 0.035 (5) −0.002 (4) 0.011 (4) −0.018 (4)

Geometric parameters (Å, º)

Hg1—Cl1 2.340 (2) C3—C4 1.416 (12)
Hg1—Cl2 2.350 (2) C3—H3 0.9400
Hg1—N1 2.463 (6) C4—C9 1.432 (11)
Hg1—O1 2.746 (6) C4—C5 1.428 (12)
Hg1—O3 2.876 (6) C5—C6 1.357 (13)
Hg1—Cl1i 3.204 (2) C5—H5 0.9400
O1—C8 1.383 (10) C6—C7 1.392 (13)
O1—C10 1.396 (10) C6—H6 0.9400
O2—C11 1.329 (10) C7—C8 1.361 (12)
O2—C12 1.468 (10) C7—H7 0.9400
O3—C11 1.195 (10) C8—C9 1.418 (11)
N1—C1 1.337 (11) C10—C11 1.502 (12)
N1—C9 1.352 (11) C10—H10A 0.9800
C1—C2 1.405 (12) C10—H10B 0.9800
C1—H1 0.9400 C12—H12A 0.9700
C2—C3 1.355 (14) C12—H12B 0.9700
C2—H2 0.9400 C12—H12C 0.9700
Cl1—Hg1—Cl2 153.41 (8) C3—C4—C5 122.3 (7)
Cl1—Hg1—N1 106.61 (17) C9—C4—C5 119.5 (7)
Cl2—Hg1—N1 99.30 (17) C6—C5—C4 119.5 (8)
Cl1—Hg1—O1 105.43 (15) C6—C5—H5 120.3
Cl2—Hg1—O1 91.75 (15) C4—C5—H5 120.3
N1—Hg1—O1 62.08 (19) C5—C6—C7 121.3 (8)
Cl1—Hg1—O3 80.81 (15) C5—C6—H6 119.4
Cl2—Hg1—O3 92.53 (16) C7—C6—H6 119.4
N1—Hg1—O3 117.7 (2) C8—C7—C6 121.2 (8)
O1—Hg1—O3 56.55 (16) C8—C7—H7 119.4
Cl1—Hg1—Cl1i 83.50 (8) C6—C7—H7 119.4
Cl2—Hg1—Cl1i 90.92 (7) C7—C8—O1 124.5 (7)
N1—Hg1—Cl1i 89.63 (16) C7—C8—C9 120.5 (7)
O1—Hg1—Cl1i 151.64 (12) O1—C8—C9 115.1 (7)
O3—Hg1—Cl1i 151.45 (13) N1—C9—C8 120.7 (7)
C8—O1—C10 116.4 (6) N1—C9—C4 121.2 (7)
C8—O1—Hg1 115.6 (4) C8—C9—C4 118.0 (7)
C10—O1—Hg1 128.0 (5) O1—C10—C11 108.5 (7)
C11—O2—C12 115.3 (7) O1—C10—H10A 110.0
C11—O3—Hg1 121.0 (5) C11—C10—H10A 110.0
C1—N1—C9 119.1 (7) O1—C10—H10B 110.0
C1—N1—Hg1 116.1 (5) C11—C10—H10B 110.0
C9—N1—Hg1 124.1 (5) H10A—C10—H10B 108.4
N1—C1—C2 122.4 (8) O3—C11—O2 124.9 (8)
N1—C1—H1 118.8 O3—C11—C10 125.5 (8)
C2—C1—H1 118.8 O2—C11—C10 109.6 (7)
C3—C2—C1 120.2 (8) O2—C12—H12A 109.5
C3—C2—H2 119.9 O2—C12—H12B 109.5
C1—C2—H2 119.9 H12A—C12—H12B 109.5
C2—C3—C4 118.8 (8) O2—C12—H12C 109.5
C2—C3—H3 120.6 H12A—C12—H12C 109.5
C4—C3—H3 120.6 H12B—C12—H12C 109.5
C3—C4—C9 118.2 (7)
Cl1—Hg1—O1—C8 −113.6 (5) C3—C4—C5—C6 178.0 (9)
Cl2—Hg1—O1—C8 86.9 (5) C9—C4—C5—C6 −0.6 (13)
N1—Hg1—O1—C8 −12.7 (5) C4—C5—C6—C7 0.9 (15)
O3—Hg1—O1—C8 178.8 (6) C5—C6—C7—C8 −1.8 (15)
Cl1i—Hg1—O1—C8 −8.3 (7) C6—C7—C8—O1 −178.0 (8)
Cl1—Hg1—O1—C10 65.7 (7) C6—C7—C8—C9 2.2 (14)
Cl2—Hg1—O1—C10 −93.8 (7) C10—O1—C8—C7 13.2 (13)
N1—Hg1—O1—C10 166.6 (8) Hg1—O1—C8—C7 −167.4 (7)
O3—Hg1—O1—C10 −1.9 (7) C10—O1—C8—C9 −167.0 (8)
Cl1i—Hg1—O1—C10 171.0 (6) Hg1—O1—C8—C9 12.4 (9)
Cl1—Hg1—O3—C11 −110.2 (7) C1—N1—C9—C8 178.2 (8)
Cl2—Hg1—O3—C11 95.7 (7) Hg1—N1—C9—C8 −11.9 (11)
N1—Hg1—O3—C11 −6.1 (8) C1—N1—C9—C4 −2.1 (11)
O1—Hg1—O3—C11 5.3 (6) Hg1—N1—C9—C4 167.8 (6)
Cl1i—Hg1—O3—C11 −167.7 (5) C7—C8—C9—N1 177.9 (8)
Cl1—Hg1—N1—C1 −78.3 (6) O1—C8—C9—N1 −1.9 (11)
Cl2—Hg1—N1—C1 95.7 (6) C7—C8—C9—C4 −1.8 (12)
O1—Hg1—N1—C1 −177.3 (7) O1—C8—C9—C4 178.4 (7)
O3—Hg1—N1—C1 −166.5 (5) C3—C4—C9—N1 2.7 (12)
Cl1i—Hg1—N1—C1 4.8 (6) C5—C4—C9—N1 −178.7 (8)
Cl1—Hg1—N1—C9 111.5 (6) C3—C4—C9—C8 −177.6 (8)
Cl2—Hg1—N1—C9 −74.5 (6) C5—C4—C9—C8 1.0 (11)
O1—Hg1—N1—C9 12.5 (6) C8—O1—C10—C11 178.6 (7)
O3—Hg1—N1—C9 23.4 (7) Hg1—O1—C10—C11 −0.7 (11)
Cl1i—Hg1—N1—C9 −165.4 (6) Hg1—O3—C11—O2 173.0 (6)
C9—N1—C1—C2 −1.0 (12) Hg1—O3—C11—C10 −8.8 (12)
Hg1—N1—C1—C2 −171.7 (7) C12—O2—C11—O3 −1.6 (12)
N1—C1—C2—C3 3.6 (14) C12—O2—C11—C10 179.9 (7)
C1—C2—C3—C4 −2.9 (13) O1—C10—C11—O3 6.4 (13)
C2—C3—C4—C9 −0.1 (12) O1—C10—C11—O2 −175.1 (7)
C2—C3—C4—C5 −178.7 (9)

Symmetry code: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2385).

References

  1. Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739. [DOI] [PubMed]
  2. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  3. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, Tokyo, Japan.
  4. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Song, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695–m1696.
  7. Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446. [DOI] [PMC free article] [PubMed]
  8. Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812026591/im2385sup1.cif

e-68-0m951-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026591/im2385Isup2.hkl

e-68-0m951-Isup2.hkl (119.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES